Cargando…
Strict-Feedback Backstepping Digital Twin and Machine Learning Solution in AE Signals for Bearing Crack Identification
Bearings are nonlinear systems that can be used in several industrial applications. In this study, the combination of a strict-feedback backstepping digital twin and machine learning algorithm was developed for bearing crack type/size diagnosis. Acoustic emission sensors were used to collect normal...
Autores principales: | Piltan, Farzin, Toma, Rafia Nishat, Shon, Dongkoo, Im, Kichang, Choi, Hyun-Kyun, Yoo, Dae-Seung, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777716/ https://www.ncbi.nlm.nih.gov/pubmed/35062499 http://dx.doi.org/10.3390/s22020539 |
Ejemplares similares
-
A Bearing Fault Classification Framework Based on Image Encoding Techniques and a Convolutional Neural Network under Different Operating Conditions
por: Toma, Rafia Nishat, et al.
Publicado: (2022) -
Classification Framework of the Bearing Faults of an Induction Motor Using Wavelet Scattering Transform-Based Features
por: Toma, Rafia Nishat, et al.
Publicado: (2022) -
Crack Size Identification for Bearings Using an Adaptive Digital Twin
por: Piltan, Farzin, et al.
Publicado: (2021) -
A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors
por: Toma, Rafia Nishat, et al.
Publicado: (2021) -
Bearing Fault Diagnosis Using an Extended Variable Structure Feedback Linearization Observer
por: Piltan, Farzin, et al.
Publicado: (2018)