Cargando…
Thiol-Ene Coupling of High Oleic Sunflower Oil towards Application in the Modification of Flexible Polyurethane Foams
High oleic sunflower oil-based polyol was obtained by thiol-ene coupling and applied in the preparation of flexible polyurethane foams. The photochemically initiated thiol-ene click reaction was carried out under UV irradiation using 2-mercaptoethanol. Bio-based polyol with hydroxyl value of 201.4 m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777839/ https://www.ncbi.nlm.nih.gov/pubmed/35057346 http://dx.doi.org/10.3390/ma15020628 |
Sumario: | High oleic sunflower oil-based polyol was obtained by thiol-ene coupling and applied in the preparation of flexible polyurethane foams. The photochemically initiated thiol-ene click reaction was carried out under UV irradiation using 2-mercaptoethanol. Bio-based polyol with hydroxyl value of 201.4 mg KOH/g was used as 30 wt% substituent of petrochemical polyether polyol in the formulations of flexible foams. Both reference foams, as well as foams modified with bio-based polyol, were formulated to have various isocyanate indices (0.85, 0.95, 1.05). Flexible foams were compared in terms of their thermomechanical properties and analyzed using FT-IR and SEM microscopy. Modification with bio-based polyol resulted in foams with superior compression properties, higher support factor, and lower resilience than reference foams. TGA and FT-IR curves confirmed the presence of urethane/urea and ether linkages in the polyurethane matrix. Moreover, double glass transition temperature corresponding to soft and hard segments of polyurethane was observed by DSC proving the phase-separated morphology. |
---|