Cargando…

Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses

Climate change and disproportionate anthropogenic interventions, such as the excess of phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress is represente...

Descripción completa

Detalles Bibliográficos
Autores principales: Cataldo, Eleonora, Fucile, Maddalena, Mattii, Giovan Battista
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777853/
https://www.ncbi.nlm.nih.gov/pubmed/35050049
http://dx.doi.org/10.3390/plants11020162
Descripción
Sumario:Climate change and disproportionate anthropogenic interventions, such as the excess of phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress is represented by the unbalanced redox homeostasis due to the overproduction of reactive oxygen species (ROS), ultimately leading to a state of oxidative stress (detrimental to grape quality). To these are added the direct and indirect damages caused by pathogens (biotic stresses). In light of this scenario, it is inevitable that sustainable techniques and sensitivity approaches for environmental and human health have to be applied in viticulture. Sustainable viticulture can only be made with the aid of sustainable products. Biostimulant (PB) applications (including resistance inducers or elicitors) in the vineyard have become interesting maneuvers for counteracting vine diseases and improving grape quality. These also represent a partial alternative to soil fertilization by improving nutrient absorption and avoiding its leaching into the groundwater. Their role as elicitors has important repercussions in the stimulation of the phenylpropanoid pathway by triggering the activation of several enzymes, such as polyphenol oxidase, lipoxygenase, phenylalanine ammonia-lyase, and peroxidase (with the accumulation of phenolic compounds). The present review paper summarizes the PBs’ implications in viticulture, gathering historical, functional, and applicative information. This work aims to highlight the innumerable beneficial effects on vines brought by these products. It also serves to spur the scientific community to a greater contribution in investigating the response mechanisms of the plant to positive inductions.