Cargando…

Generating Different Polarized Multiple Vortex Beams at Different Frequencies from Laminated Meta-Surface Lenses

We demonstrate the generation of multiple orbital angular momentum (OAM) vortex beams with different radiating states at different frequencies through a laminated meta-surface lens consisting of a dual polarized meta-array interconnected with a frequency selective meta-array. The co-linearly polariz...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Pengfei, Yang, Rui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777896/
https://www.ncbi.nlm.nih.gov/pubmed/35056226
http://dx.doi.org/10.3390/mi13010061
Descripción
Sumario:We demonstrate the generation of multiple orbital angular momentum (OAM) vortex beams with different radiating states at different frequencies through a laminated meta-surface lens consisting of a dual polarized meta-array interconnected with a frequency selective meta-array. The co-linearly polarized (LP) waves from the source can directly penetrate the meta-surface lens to form multiple OAM vortex beams at one frequency. On the other hand, the meta-surface lens will be capable of releasing the cross-LP counterparts at another frequency with high-efficient polarization conversions to have multiple OAM vortex radiations with different radiating directions and vortex modes. Our design, using laminated meta-surface lens to synthesize multiple OAM vortex beams with orthogonal polarizations at different frequencies, should pave the way for building up more advanced vortex beam communication system with expanded diversity of the meta-device.