Cargando…
Dynamic Asynchronous Anti Poisoning Federated Deep Learning with Blockchain-Based Reputation-Aware Solutions
As promising privacy-preserving machine learning technology, federated learning enables multiple clients to train the joint global model via sharing model parameters. However, inefficiency and vulnerability to poisoning attacks significantly reduce federated learning performance. To solve the aforem...
Autores principales: | Chen, Zunming, Cui, Hongyan, Wu, Ensen, Yu, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777936/ https://www.ncbi.nlm.nih.gov/pubmed/35062645 http://dx.doi.org/10.3390/s22020684 |
Ejemplares similares
-
Asynchronous Federated Learning System Based on Permissioned Blockchains
por: Wang, Rong, et al.
Publicado: (2022) -
Blockchain-Enabled Asynchronous Federated Learning in Edge Computing
por: Liu, Yinghui, et al.
Publicado: (2021) -
Blockchain-based Reputation for Intelligent Transportation Systems
por: Hîrţan, Liviu-Adrian, et al.
Publicado: (2020) -
Blockchain-Assisted Reputation Management Scheme for Internet of Vehicles
por: Liu, Qian, et al.
Publicado: (2023) -
Redactable Blockchain Trust Scheme Based on Reputation Consensus for MEC
por: Tang, YongLi, et al.
Publicado: (2022)