Cargando…
sEMG-Based Motion Recognition of Upper Limb Rehabilitation Using the Improved Yolo-v4 Algorithm
The surface electromyography (sEMG) signal is widely used as a control source of the upper limb exoskeleton rehabilitation robot. However, the traditional way of controlling the exoskeleton robot by the sEMG signal requires one to specially extract and calculate for complex sEMG features. Moreover,...
Autores principales: | Bu, Dongdong, Guo, Shuxiang, Li, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778025/ https://www.ncbi.nlm.nih.gov/pubmed/35054457 http://dx.doi.org/10.3390/life12010064 |
Ejemplares similares
-
Low-Density sEMG-Based Pattern Recognition of Unrelated Movements Rejection for Wrist Joint Rehabilitation
por: Bu, Dongdong, et al.
Publicado: (2023) -
Fusion Learning for sEMG Recognition of Multiple Upper-Limb Rehabilitation Movements
por: Zhong, Tianyang, et al.
Publicado: (2021) -
Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement
por: Guo, Shuxiang, et al.
Publicado: (2015) -
SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training
por: Cai, Siqi, et al.
Publicado: (2019) -
A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees
por: Li, Xiangxin, et al.
Publicado: (2017)