Cargando…
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
Recently, with the development of convolutional neural networks, single-image super-resolution (SISR) has achieved better performance. However, the practical application of image super-resolution is limited by a large number of parameters and calculations. In this work, we present a lightweight mult...
Autores principales: | Zhang, Min, Wang, Huibin, Zhang, Zhen, Chen, Zhe, Shen, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778112/ https://www.ncbi.nlm.nih.gov/pubmed/35056219 http://dx.doi.org/10.3390/mi13010054 |
Ejemplares similares
-
Accurate and lightweight MRI super-resolution via multi-scale bidirectional fusion attention network
por: Xu, Ling, et al.
Publicado: (2022) -
Thermal Image Super-Resolution Based on Lightweight Dynamic Attention Network for Infrared Sensors
por: Zhang, Haikun, et al.
Publicado: (2023) -
A Lightweight Recurrent Grouping Attention Network for Video Super-Resolution
por: Zhu, Yonggui, et al.
Publicado: (2023) -
Enhanced Single Image Super Resolution Method Using Lightweight Multi-Scale Channel Dense Network
por: Lee, Yooho, et al.
Publicado: (2021) -
Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution
por: Shen, Ying, et al.
Publicado: (2023)