Cargando…
Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography
Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778126/ https://www.ncbi.nlm.nih.gov/pubmed/35056214 http://dx.doi.org/10.3390/mi13010049 |
_version_ | 1784637243081621504 |
---|---|
author | Kasi, Dhanesh G. de Graaf, Mees N. S. Motreuil-Ragot, Paul A. Frimat, Jean-Phillipe M. S. Ferrari, Michel D. Sarro, Pasqualina M. Mastrangeli, Massimo van den Maagdenberg, Arn M. J. M. Mummery, Christine L. Orlova, Valeria V. |
author_facet | Kasi, Dhanesh G. de Graaf, Mees N. S. Motreuil-Ragot, Paul A. Frimat, Jean-Phillipe M. S. Ferrari, Michel D. Sarro, Pasqualina M. Mastrangeli, Massimo van den Maagdenberg, Arn M. J. M. Mummery, Christine L. Orlova, Valeria V. |
author_sort | Kasi, Dhanesh G. |
collection | PubMed |
description | Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices. |
format | Online Article Text |
id | pubmed-8778126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87781262022-01-22 Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography Kasi, Dhanesh G. de Graaf, Mees N. S. Motreuil-Ragot, Paul A. Frimat, Jean-Phillipe M. S. Ferrari, Michel D. Sarro, Pasqualina M. Mastrangeli, Massimo van den Maagdenberg, Arn M. J. M. Mummery, Christine L. Orlova, Valeria V. Micromachines (Basel) Article Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices. MDPI 2021-12-29 /pmc/articles/PMC8778126/ /pubmed/35056214 http://dx.doi.org/10.3390/mi13010049 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kasi, Dhanesh G. de Graaf, Mees N. S. Motreuil-Ragot, Paul A. Frimat, Jean-Phillipe M. S. Ferrari, Michel D. Sarro, Pasqualina M. Mastrangeli, Massimo van den Maagdenberg, Arn M. J. M. Mummery, Christine L. Orlova, Valeria V. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography |
title | Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography |
title_full | Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography |
title_fullStr | Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography |
title_full_unstemmed | Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography |
title_short | Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography |
title_sort | rapid prototyping of organ-on-a-chip devices using maskless photolithography |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778126/ https://www.ncbi.nlm.nih.gov/pubmed/35056214 http://dx.doi.org/10.3390/mi13010049 |
work_keys_str_mv | AT kasidhaneshg rapidprototypingoforganonachipdevicesusingmasklessphotolithography AT degraafmeesns rapidprototypingoforganonachipdevicesusingmasklessphotolithography AT motreuilragotpaula rapidprototypingoforganonachipdevicesusingmasklessphotolithography AT frimatjeanphillipems rapidprototypingoforganonachipdevicesusingmasklessphotolithography AT ferrarimicheld rapidprototypingoforganonachipdevicesusingmasklessphotolithography AT sarropasqualinam rapidprototypingoforganonachipdevicesusingmasklessphotolithography AT mastrangelimassimo rapidprototypingoforganonachipdevicesusingmasklessphotolithography AT vandenmaagdenbergarnmjm rapidprototypingoforganonachipdevicesusingmasklessphotolithography AT mummerychristinel rapidprototypingoforganonachipdevicesusingmasklessphotolithography AT orlovavaleriav rapidprototypingoforganonachipdevicesusingmasklessphotolithography |