Cargando…

Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography

Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major...

Descripción completa

Detalles Bibliográficos
Autores principales: Kasi, Dhanesh G., de Graaf, Mees N. S., Motreuil-Ragot, Paul A., Frimat, Jean-Phillipe M. S., Ferrari, Michel D., Sarro, Pasqualina M., Mastrangeli, Massimo, van den Maagdenberg, Arn M. J. M., Mummery, Christine L., Orlova, Valeria V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778126/
https://www.ncbi.nlm.nih.gov/pubmed/35056214
http://dx.doi.org/10.3390/mi13010049
_version_ 1784637243081621504
author Kasi, Dhanesh G.
de Graaf, Mees N. S.
Motreuil-Ragot, Paul A.
Frimat, Jean-Phillipe M. S.
Ferrari, Michel D.
Sarro, Pasqualina M.
Mastrangeli, Massimo
van den Maagdenberg, Arn M. J. M.
Mummery, Christine L.
Orlova, Valeria V.
author_facet Kasi, Dhanesh G.
de Graaf, Mees N. S.
Motreuil-Ragot, Paul A.
Frimat, Jean-Phillipe M. S.
Ferrari, Michel D.
Sarro, Pasqualina M.
Mastrangeli, Massimo
van den Maagdenberg, Arn M. J. M.
Mummery, Christine L.
Orlova, Valeria V.
author_sort Kasi, Dhanesh G.
collection PubMed
description Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices.
format Online
Article
Text
id pubmed-8778126
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87781262022-01-22 Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography Kasi, Dhanesh G. de Graaf, Mees N. S. Motreuil-Ragot, Paul A. Frimat, Jean-Phillipe M. S. Ferrari, Michel D. Sarro, Pasqualina M. Mastrangeli, Massimo van den Maagdenberg, Arn M. J. M. Mummery, Christine L. Orlova, Valeria V. Micromachines (Basel) Article Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices. MDPI 2021-12-29 /pmc/articles/PMC8778126/ /pubmed/35056214 http://dx.doi.org/10.3390/mi13010049 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kasi, Dhanesh G.
de Graaf, Mees N. S.
Motreuil-Ragot, Paul A.
Frimat, Jean-Phillipe M. S.
Ferrari, Michel D.
Sarro, Pasqualina M.
Mastrangeli, Massimo
van den Maagdenberg, Arn M. J. M.
Mummery, Christine L.
Orlova, Valeria V.
Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography
title Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography
title_full Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography
title_fullStr Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography
title_full_unstemmed Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography
title_short Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography
title_sort rapid prototyping of organ-on-a-chip devices using maskless photolithography
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778126/
https://www.ncbi.nlm.nih.gov/pubmed/35056214
http://dx.doi.org/10.3390/mi13010049
work_keys_str_mv AT kasidhaneshg rapidprototypingoforganonachipdevicesusingmasklessphotolithography
AT degraafmeesns rapidprototypingoforganonachipdevicesusingmasklessphotolithography
AT motreuilragotpaula rapidprototypingoforganonachipdevicesusingmasklessphotolithography
AT frimatjeanphillipems rapidprototypingoforganonachipdevicesusingmasklessphotolithography
AT ferrarimicheld rapidprototypingoforganonachipdevicesusingmasklessphotolithography
AT sarropasqualinam rapidprototypingoforganonachipdevicesusingmasklessphotolithography
AT mastrangelimassimo rapidprototypingoforganonachipdevicesusingmasklessphotolithography
AT vandenmaagdenbergarnmjm rapidprototypingoforganonachipdevicesusingmasklessphotolithography
AT mummerychristinel rapidprototypingoforganonachipdevicesusingmasklessphotolithography
AT orlovavaleriav rapidprototypingoforganonachipdevicesusingmasklessphotolithography