Cargando…

Complete Chloroplast Genome Sequence of Fagus longipetiolata Seemen (Fagaceae): Genome Structure, Adaptive Evolution, and Phylogenetic Relationships

Fagus longipetiolata Seemen is a deciduous tree of the Fagus genus in Fagaceae, which is endemic to China. In this study, we successfully sequenced the cp genome of F. longipetiolata, compared the cp genomes of the Fagus genus, and reconstructed the phylogeny of Fagaceae. The results showed that the...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Daqu, Wang, Haoyun, Zhang, Jun, Zhao, Yuanxiang, Wu, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778281/
https://www.ncbi.nlm.nih.gov/pubmed/35054485
http://dx.doi.org/10.3390/life12010092
Descripción
Sumario:Fagus longipetiolata Seemen is a deciduous tree of the Fagus genus in Fagaceae, which is endemic to China. In this study, we successfully sequenced the cp genome of F. longipetiolata, compared the cp genomes of the Fagus genus, and reconstructed the phylogeny of Fagaceae. The results showed that the cp genome of F. longipetiolata was 158,350 bp, including a pair of inverted repeat (IRA and IRB) regions with a length of 25,894 bp each, a large single-copy (LSC) region of 87,671 bp, and a small single-copy (SSC) region of 18,891 bp. The genome encoded 131 unique genes, including 81 protein-coding genes, 37 transfer RNA genes (tRNAs), 8 ribosomal RNA genes (rRNAs), and 5 pseudogenes. In addition, 33 codons and 258 simple sequence repeats (SSRs) were identified. The cp genomes of Fagus were relatively conserved, especially the IR regions, which showed the best conservation, and no inversions or rearrangements were found. The five regions with the largest variations were the rps12, rpl32, ccsA, trnW-CCA, and rps3 genes, which spread over in LSC and SSC. The comparison of gene selection pressure indicated that purifying selection was the main selective pattern maintaining important biological functions in Fagus cp genomes. However, the ndhD, rpoA, and ndhF genes of F. longipetiolata were affected by positive selection. Phylogenetic analysis revealed that F. longipetiolata and F. engleriana formed a close relationship, which partially overlapped in their distribution in China. Our analysis of the cp genome of F. longipetiolata would provide important genetic information for further research into the classification, phylogeny and evolution of Fagus.