Cargando…
Enhanced Recognition of Amputated Wrist and Hand Movements by Deep Learning Method Using Multimodal Fusion of Electromyography and Electroencephalography
Motion classification can be performed using biometric signals recorded by electroencephalography (EEG) or electromyography (EMG) with noninvasive surface electrodes for the control of prosthetic arms. However, current single-modal EEG and EMG based motion classification techniques are limited owing...
Autores principales: | Kim, Sehyeon, Shin, Dae Youp, Kim, Taekyung, Lee, Sangsook, Hyun, Jung Keun, Park, Sung-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778369/ https://www.ncbi.nlm.nih.gov/pubmed/35062641 http://dx.doi.org/10.3390/s22020680 |
Ejemplares similares
-
Multimodal hand gesture recognition using single IMU and acoustic measurements at wrist
por: Siddiqui, Nabeel, et al.
Publicado: (2020) -
Finger Movement Recognition via High-Density Electromyography of Intrinsic and Extrinsic Hand Muscles
por: Hu, Xuhui, et al.
Publicado: (2022) -
Feature Extraction of Surface Electromyography Using Wavelet Weighted Permutation Entropy for Hand Movement Recognition
por: Liu, Xiaoyun, et al.
Publicado: (2020) -
Data Augmentation of Surface Electromyography for Hand Gesture Recognition
por: Tsinganos, Panagiotis, et al.
Publicado: (2020) -
A Case of Melanotic Tumor of Hand, Removed by Amputation at Wrist-Joint
por: Reilly, Edward
Publicado: (1866)