Cargando…
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs
In-flight system failure is one of the major safety concerns in the operation of unmanned aerial vehicles (UAVs) in urban environments. To address this concern, a safety framework consisting of following three main tasks can be utilized: (1) Monitoring health of the UAV and detecting failures, (2) F...
Autores principales: | Nepal, Upesh, Eslamiat, Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778480/ https://www.ncbi.nlm.nih.gov/pubmed/35062425 http://dx.doi.org/10.3390/s22020464 |
Ejemplares similares
-
Improved GBS-YOLOv5 algorithm based on YOLOv5 applied to UAV intelligent traffic
por: Liu, Haiying, et al.
Publicado: (2023) -
UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios
por: Wang, Gang, et al.
Publicado: (2023) -
YOLOv5s-SA: Light-Weighted and Improved YOLOv5s for Sperm Detection
por: Zhu, Ronghua, et al.
Publicado: (2023) -
Improved YOLOv4 for Pedestrian Detection and Counting in UAV Images
por: Kong, Hao, et al.
Publicado: (2022) -
GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
por: Zhao, Yue, et al.
Publicado: (2023)