Cargando…
Developing a Machine Learning Model to Predict Severe Chronic Obstructive Pulmonary Disease Exacerbations: Retrospective Cohort Study
BACKGROUND: Chronic obstructive pulmonary disease (COPD) poses a large burden on health care. Severe COPD exacerbations require emergency department visits or inpatient stays, often cause an irreversible decline in lung function and health status, and account for 90.3% of the total medical cost rela...
Autores principales: | Zeng, Siyang, Arjomandi, Mehrdad, Tong, Yao, Liao, Zachary C, Luo, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778560/ https://www.ncbi.nlm.nih.gov/pubmed/34989686 http://dx.doi.org/10.2196/28953 |
Ejemplares similares
-
Automatically Explaining Machine Learning Predictions on Severe Chronic Obstructive Pulmonary Disease Exacerbations: Retrospective Cohort Study
por: Zeng, Siyang, et al.
Publicado: (2022) -
Laboratory-based Intermountain Validated Exacerbation (LIVE) Score stability in patients with chronic obstructive pulmonary disease
por: Blagev, Denitza P, et al.
Publicado: (2020) -
The Laboratory-Based Intermountain Validated Exacerbation (LIVE) Score Identifies Chronic Obstructive Pulmonary Disease Patients at High Mortality Risk
por: Blagev, Denitza P., et al.
Publicado: (2018) -
Lung volumes differentiate the predominance of emphysema versus airway disease phenotype in early COPD: an observational study of the COPDGene cohort
por: Zeng, Siyang, et al.
Publicado: (2023) -
The association of aspirin use with severity of acute exacerbation of chronic obstructive pulmonary disease: a retrospective cohort study
por: Goto, Tadahiro, et al.
Publicado: (2018)