Cargando…
A Hybrid Sparse Representation Model for Image Restoration
Group-based sparse representation (GSR) uses image nonlocal self-similarity (NSS) prior to grouping similar image patches, and then performs sparse representation. However, the traditional GSR model restores the image by training degraded images, which leads to the inevitable over-fitting of the dat...
Autores principales: | Zhou, Caiyue, Kong, Yanfen, Zhang, Chuanyong, Sun, Lin, Wu, Dongmei, Zhou, Chongbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778763/ https://www.ncbi.nlm.nih.gov/pubmed/35062497 http://dx.doi.org/10.3390/s22020537 |
Ejemplares similares
-
A Robust Sparse Representation Model for Hyperspectral Image Classification †
por: Huang, Shaoguang, et al.
Publicado: (2017) -
An improved sparse representation model with structural information for Multicolour Fluorescence In-Situ Hybridization (M-FISH) image classification
por: Li, Jingyao, et al.
Publicado: (2013) -
Noise reduction of diffusion tensor images by sparse representation and dictionary learning
por: Kong, Youyong, et al.
Publicado: (2016) -
An object-based sparse representation model for spatiotemporal image fusion
por: Asefpour Vakilian, Afshin, et al.
Publicado: (2022) -
Microstructure Images Restoration of Metallic Materials Based upon KSVD and Smoothing Penalty Sparse Representation Approach
por: Li, Qing, et al.
Publicado: (2018)