Cargando…
An Unsupervised Approach to Structuring and Analyzing Repetitive Semantic Structures in Free Text of Electronic Medical Records
Electronic medical records (EMRs) include many valuable data about patients, which is, however, unstructured. Therefore, there is a lack of both labeled medical text data in Russian and tools for automatic annotation. As a result, today, it is hardly feasible for researchers to utilize text data of...
Autores principales: | Koshman, Varvara, Funkner, Anastasia, Kovalchuk, Sergey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778877/ https://www.ncbi.nlm.nih.gov/pubmed/35055340 http://dx.doi.org/10.3390/jpm12010025 |
Ejemplares similares
-
Time Expressions Identification Without Human-Labeled Corpus for Clinical Text Mining in Russian
por: Funkner, Anastasia A., et al.
Publicado: (2020) -
Combining Free Text and Structured Electronic Medical Record Entries to Detect Acute Respiratory Infections
por: DeLisle, Sylvain, et al.
Publicado: (2010) -
From free text to clusters of content in health records: an unsupervised graph partitioning approach
por: Altuncu, M. Tarik, et al.
Publicado: (2019) -
Correction: Combining Free Text and Structured Electronic Medical Record Entries to Detect Acute Respiratory Infections
por: DeLisle, Sylvain, et al.
Publicado: (2011) -
ADEPt, a semantically-enriched pipeline for extracting adverse drug events from free-text electronic health records
por: Iqbal, Ehtesham, et al.
Publicado: (2017)