Cargando…
TLCrys: Transfer Learning Based Method for Protein Crystallization Prediction
X-ray diffraction technique is one of the most common methods of ascertaining protein structures, yet only 2–10% of proteins can produce diffraction-quality crystals. Several computational methods have been proposed so far to predict protein crystallization. Nevertheless, the current state-of-the-ar...
Autores principales: | Jin, Chen, Shi, Zhuangwei, Kang, Chuanze, Lin, Ken, Zhang, Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778968/ https://www.ncbi.nlm.nih.gov/pubmed/35055158 http://dx.doi.org/10.3390/ijms23020972 |
Ejemplares similares
-
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Predicting miRNA-Disease Association Based on Neural Inductive Matrix Completion with Graph Autoencoders and Self-Attention Mechanism
por: Jin, Chen, et al.
Publicado: (2022) -
An Interpretable Double-Scale Attention Model for Enzyme Protein Class Prediction Based on Transformer Encoders and Multi-Scale Convolutions
por: Lin, Ken, et al.
Publicado: (2022) -
A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations
por: Shi, Zhuangwei, et al.
Publicado: (2021) -
Prediction of functional microexons by transfer learning
por: Cheng, Qi, et al.
Publicado: (2021)