Cargando…
Methodology for Neural Network-Based Material Card Calibration Using LS-DYNA MAT_187_SAMP-1 Considering Failure with GISSMO
A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with inte...
Autores principales: | Meißner, Paul, Winter, Jens, Vietor, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778971/ https://www.ncbi.nlm.nih.gov/pubmed/35057362 http://dx.doi.org/10.3390/ma15020643 |
Ejemplares similares
-
Structural finite element model updating considering soil-structure interaction using ls-dyna in loop
por: Park, Gun, et al.
Publicado: (2023) -
A Novel Implementation of the LDEM in the Ansys LS-DYNA Finite Element Code
por: Zanichelli, Andrea, et al.
Publicado: (2021) -
Determination and Verification of GISSMO Fracture Properties of Bolts Used in Radioactive Waste Transport Containers
por: Gu, Bonjoon, et al.
Publicado: (2022) -
Investigation of fragment separation during a circular saw blade cutting rock based on ANSYS/LS-DYNA
por: Wang, Zhiwen, et al.
Publicado: (2022) -
Implementation and validation of the extended Hill-type muscle model with robust routing capabilities in LS-DYNA for active human body models
por: Kleinbach, Christian, et al.
Publicado: (2017)