Cargando…
A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor
The development of faster, sensitive and real-time methods for detecting organophosphate (OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds. Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor is the thermostable en...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778994/ https://www.ncbi.nlm.nih.gov/pubmed/35062524 http://dx.doi.org/10.3390/s22020561 |
_version_ | 1784637462910337024 |
---|---|
author | Rodrigues, Andreia C. M. Barbieri, Maria Vittoria Chino, Marco Manco, Giuseppe Febbraio, Ferdinando |
author_facet | Rodrigues, Andreia C. M. Barbieri, Maria Vittoria Chino, Marco Manco, Giuseppe Febbraio, Ferdinando |
author_sort | Rodrigues, Andreia C. M. |
collection | PubMed |
description | The development of faster, sensitive and real-time methods for detecting organophosphate (OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds. Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor is the thermostable enzyme esterase-2 from Alicyclobacillus acidocaldarius (EST2), with a lipase-like Ser–His–Asp catalytic triad with a high affinity for OPs. This study aimed to evaluate the applicability of Förster resonance energy transfer (FRET) as a sensitive and reliable method to quantify OPs at environmentally relevant concentrations. For this purpose, the previously developed IAEDANS-labelled EST2-S35C mutant was used, in which tryptophan and IAEDANS fluorophores are the donor and the acceptor, respectively. Fluorometric measurements showed linearity with increased EST2-S35C concentrations. No significant interference was observed in the FRET measurements due to changes in the pH of the medium or the addition of other organic components (glucose, ascorbic acid or yeast extract). Fluorescence quenching due to the presence of paraoxon was observed at concentrations as low as 2 nM, which are considered harmful for the ecosystem. These results pave the way for further experiments encompassing more complex matrices. |
format | Online Article Text |
id | pubmed-8778994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87789942022-01-22 A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor Rodrigues, Andreia C. M. Barbieri, Maria Vittoria Chino, Marco Manco, Giuseppe Febbraio, Ferdinando Sensors (Basel) Article The development of faster, sensitive and real-time methods for detecting organophosphate (OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds. Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor is the thermostable enzyme esterase-2 from Alicyclobacillus acidocaldarius (EST2), with a lipase-like Ser–His–Asp catalytic triad with a high affinity for OPs. This study aimed to evaluate the applicability of Förster resonance energy transfer (FRET) as a sensitive and reliable method to quantify OPs at environmentally relevant concentrations. For this purpose, the previously developed IAEDANS-labelled EST2-S35C mutant was used, in which tryptophan and IAEDANS fluorophores are the donor and the acceptor, respectively. Fluorometric measurements showed linearity with increased EST2-S35C concentrations. No significant interference was observed in the FRET measurements due to changes in the pH of the medium or the addition of other organic components (glucose, ascorbic acid or yeast extract). Fluorescence quenching due to the presence of paraoxon was observed at concentrations as low as 2 nM, which are considered harmful for the ecosystem. These results pave the way for further experiments encompassing more complex matrices. MDPI 2022-01-12 /pmc/articles/PMC8778994/ /pubmed/35062524 http://dx.doi.org/10.3390/s22020561 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rodrigues, Andreia C. M. Barbieri, Maria Vittoria Chino, Marco Manco, Giuseppe Febbraio, Ferdinando A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor |
title | A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor |
title_full | A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor |
title_fullStr | A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor |
title_full_unstemmed | A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor |
title_short | A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor |
title_sort | fret approach to detect paraoxon among organophosphate pesticides using a fluorescent biosensor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778994/ https://www.ncbi.nlm.nih.gov/pubmed/35062524 http://dx.doi.org/10.3390/s22020561 |
work_keys_str_mv | AT rodriguesandreiacm afretapproachtodetectparaoxonamongorganophosphatepesticidesusingafluorescentbiosensor AT barbierimariavittoria afretapproachtodetectparaoxonamongorganophosphatepesticidesusingafluorescentbiosensor AT chinomarco afretapproachtodetectparaoxonamongorganophosphatepesticidesusingafluorescentbiosensor AT mancogiuseppe afretapproachtodetectparaoxonamongorganophosphatepesticidesusingafluorescentbiosensor AT febbraioferdinando afretapproachtodetectparaoxonamongorganophosphatepesticidesusingafluorescentbiosensor AT rodriguesandreiacm fretapproachtodetectparaoxonamongorganophosphatepesticidesusingafluorescentbiosensor AT barbierimariavittoria fretapproachtodetectparaoxonamongorganophosphatepesticidesusingafluorescentbiosensor AT chinomarco fretapproachtodetectparaoxonamongorganophosphatepesticidesusingafluorescentbiosensor AT mancogiuseppe fretapproachtodetectparaoxonamongorganophosphatepesticidesusingafluorescentbiosensor AT febbraioferdinando fretapproachtodetectparaoxonamongorganophosphatepesticidesusingafluorescentbiosensor |