Cargando…
SCMTHP: A New Approach for Identifying and Characterizing of Tumor-Homing Peptides Using Estimated Propensity Scores of Amino Acids
Tumor-homing peptides (THPs) are small peptides that can recognize and bind cancer cells specifically. To gain a better understanding of THPs’ functional mechanisms, the accurate identification and characterization of THPs is required. Although some computational methods for in silico THP identifica...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779003/ https://www.ncbi.nlm.nih.gov/pubmed/35057016 http://dx.doi.org/10.3390/pharmaceutics14010122 |
_version_ | 1784637464613224448 |
---|---|
author | Charoenkwan, Phasit Chiangjong, Wararat Nantasenamat, Chanin Moni, Mohammad Ali Lio’, Pietro Manavalan, Balachandran Shoombuatong, Watshara |
author_facet | Charoenkwan, Phasit Chiangjong, Wararat Nantasenamat, Chanin Moni, Mohammad Ali Lio’, Pietro Manavalan, Balachandran Shoombuatong, Watshara |
author_sort | Charoenkwan, Phasit |
collection | PubMed |
description | Tumor-homing peptides (THPs) are small peptides that can recognize and bind cancer cells specifically. To gain a better understanding of THPs’ functional mechanisms, the accurate identification and characterization of THPs is required. Although some computational methods for in silico THP identification have been proposed, a major drawback is their lack of model interpretability. In this study, we propose a new, simple and easily interpretable computational approach (called SCMTHP) for identifying and analyzing tumor-homing activities of peptides via the use of a scoring card method (SCM). To improve the predictability and interpretability of our predictor, we generated propensity scores of 20 amino acids as THPs. Finally, informative physicochemical properties were used for providing insights on characteristics giving rise to the bioactivity of THPs via the use of SCMTHP-derived propensity scores. Benchmarking experiments from independent test indicated that SCMTHP could achieve comparable performance to state-of-the-art method with accuracies of 0.827 and 0.798, respectively, when evaluated on two benchmark datasets consisting of Main and Small datasets. Furthermore, SCMTHP was found to outperform several well-known machine learning-based classifiers (e.g., decision tree, k-nearest neighbor, multi-layer perceptron, naive Bayes and partial least squares regression) as indicated by both 10-fold cross-validation and independent tests. Finally, the SCMTHP web server was established and made freely available online. SCMTHP is expected to be a useful tool for rapid and accurate identification of THPs and for providing better understanding on THP biophysical and biochemical properties. |
format | Online Article Text |
id | pubmed-8779003 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87790032022-01-22 SCMTHP: A New Approach for Identifying and Characterizing of Tumor-Homing Peptides Using Estimated Propensity Scores of Amino Acids Charoenkwan, Phasit Chiangjong, Wararat Nantasenamat, Chanin Moni, Mohammad Ali Lio’, Pietro Manavalan, Balachandran Shoombuatong, Watshara Pharmaceutics Article Tumor-homing peptides (THPs) are small peptides that can recognize and bind cancer cells specifically. To gain a better understanding of THPs’ functional mechanisms, the accurate identification and characterization of THPs is required. Although some computational methods for in silico THP identification have been proposed, a major drawback is their lack of model interpretability. In this study, we propose a new, simple and easily interpretable computational approach (called SCMTHP) for identifying and analyzing tumor-homing activities of peptides via the use of a scoring card method (SCM). To improve the predictability and interpretability of our predictor, we generated propensity scores of 20 amino acids as THPs. Finally, informative physicochemical properties were used for providing insights on characteristics giving rise to the bioactivity of THPs via the use of SCMTHP-derived propensity scores. Benchmarking experiments from independent test indicated that SCMTHP could achieve comparable performance to state-of-the-art method with accuracies of 0.827 and 0.798, respectively, when evaluated on two benchmark datasets consisting of Main and Small datasets. Furthermore, SCMTHP was found to outperform several well-known machine learning-based classifiers (e.g., decision tree, k-nearest neighbor, multi-layer perceptron, naive Bayes and partial least squares regression) as indicated by both 10-fold cross-validation and independent tests. Finally, the SCMTHP web server was established and made freely available online. SCMTHP is expected to be a useful tool for rapid and accurate identification of THPs and for providing better understanding on THP biophysical and biochemical properties. MDPI 2022-01-04 /pmc/articles/PMC8779003/ /pubmed/35057016 http://dx.doi.org/10.3390/pharmaceutics14010122 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Charoenkwan, Phasit Chiangjong, Wararat Nantasenamat, Chanin Moni, Mohammad Ali Lio’, Pietro Manavalan, Balachandran Shoombuatong, Watshara SCMTHP: A New Approach for Identifying and Characterizing of Tumor-Homing Peptides Using Estimated Propensity Scores of Amino Acids |
title | SCMTHP: A New Approach for Identifying and Characterizing of Tumor-Homing Peptides Using Estimated Propensity Scores of Amino Acids |
title_full | SCMTHP: A New Approach for Identifying and Characterizing of Tumor-Homing Peptides Using Estimated Propensity Scores of Amino Acids |
title_fullStr | SCMTHP: A New Approach for Identifying and Characterizing of Tumor-Homing Peptides Using Estimated Propensity Scores of Amino Acids |
title_full_unstemmed | SCMTHP: A New Approach for Identifying and Characterizing of Tumor-Homing Peptides Using Estimated Propensity Scores of Amino Acids |
title_short | SCMTHP: A New Approach for Identifying and Characterizing of Tumor-Homing Peptides Using Estimated Propensity Scores of Amino Acids |
title_sort | scmthp: a new approach for identifying and characterizing of tumor-homing peptides using estimated propensity scores of amino acids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779003/ https://www.ncbi.nlm.nih.gov/pubmed/35057016 http://dx.doi.org/10.3390/pharmaceutics14010122 |
work_keys_str_mv | AT charoenkwanphasit scmthpanewapproachforidentifyingandcharacterizingoftumorhomingpeptidesusingestimatedpropensityscoresofaminoacids AT chiangjongwararat scmthpanewapproachforidentifyingandcharacterizingoftumorhomingpeptidesusingestimatedpropensityscoresofaminoacids AT nantasenamatchanin scmthpanewapproachforidentifyingandcharacterizingoftumorhomingpeptidesusingestimatedpropensityscoresofaminoacids AT monimohammadali scmthpanewapproachforidentifyingandcharacterizingoftumorhomingpeptidesusingestimatedpropensityscoresofaminoacids AT liopietro scmthpanewapproachforidentifyingandcharacterizingoftumorhomingpeptidesusingestimatedpropensityscoresofaminoacids AT manavalanbalachandran scmthpanewapproachforidentifyingandcharacterizingoftumorhomingpeptidesusingestimatedpropensityscoresofaminoacids AT shoombuatongwatshara scmthpanewapproachforidentifyingandcharacterizingoftumorhomingpeptidesusingestimatedpropensityscoresofaminoacids |