Cargando…
The Impact of a Graded Maximal Exercise Protocol on Exhaled Volatile Organic Compounds: A Pilot Study
Exhaled volatile organic compounds (VOCs) are of interest due to their minimally invasive sampling procedure. Previous studies have investigated the impact of exercise, with evidence suggesting that breath VOCs reflect exercise-induced metabolic activity. However, these studies have yet to investiga...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779231/ https://www.ncbi.nlm.nih.gov/pubmed/35056684 http://dx.doi.org/10.3390/molecules27020370 |
_version_ | 1784637523621838848 |
---|---|
author | Heaney, Liam M. Kang, Shuo Turner, Matthew A. Lindley, Martin R. Thomas, C. L. Paul |
author_facet | Heaney, Liam M. Kang, Shuo Turner, Matthew A. Lindley, Martin R. Thomas, C. L. Paul |
author_sort | Heaney, Liam M. |
collection | PubMed |
description | Exhaled volatile organic compounds (VOCs) are of interest due to their minimally invasive sampling procedure. Previous studies have investigated the impact of exercise, with evidence suggesting that breath VOCs reflect exercise-induced metabolic activity. However, these studies have yet to investigate the impact of maximal exercise to exhaustion on breath VOCs, which was the main aim of this study. Two-litre breath samples were collected onto thermal desorption tubes using a portable breath collection unit. Samples were collected pre-exercise, and at 10 and 60 min following a maximal exercise test (VO(2MAX)). Breath VOCs were analysed by thermal desorption-gas chromatography-mass spectrometry using a non-targeted approach. Data showed a tendency for reduced isoprene in samples at 10 min post-exercise, with a return to baseline by 60 min. However, inter-individual variation meant differences between baseline and 10 min could not be confirmed, although the 10 and 60 min timepoints were different (p = 0.041). In addition, baseline samples showed a tendency for both acetone and isoprene to be reduced in those with higher absolute VO(2MAX) scores (mL(O(2))/min), although with restricted statistical power. Baseline samples could not differentiate between relative VO(2MAX) scores (mL(O(2))/kg/min). In conclusion, these data support that isoprene levels are dynamic in response to exercise. |
format | Online Article Text |
id | pubmed-8779231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87792312022-01-22 The Impact of a Graded Maximal Exercise Protocol on Exhaled Volatile Organic Compounds: A Pilot Study Heaney, Liam M. Kang, Shuo Turner, Matthew A. Lindley, Martin R. Thomas, C. L. Paul Molecules Article Exhaled volatile organic compounds (VOCs) are of interest due to their minimally invasive sampling procedure. Previous studies have investigated the impact of exercise, with evidence suggesting that breath VOCs reflect exercise-induced metabolic activity. However, these studies have yet to investigate the impact of maximal exercise to exhaustion on breath VOCs, which was the main aim of this study. Two-litre breath samples were collected onto thermal desorption tubes using a portable breath collection unit. Samples were collected pre-exercise, and at 10 and 60 min following a maximal exercise test (VO(2MAX)). Breath VOCs were analysed by thermal desorption-gas chromatography-mass spectrometry using a non-targeted approach. Data showed a tendency for reduced isoprene in samples at 10 min post-exercise, with a return to baseline by 60 min. However, inter-individual variation meant differences between baseline and 10 min could not be confirmed, although the 10 and 60 min timepoints were different (p = 0.041). In addition, baseline samples showed a tendency for both acetone and isoprene to be reduced in those with higher absolute VO(2MAX) scores (mL(O(2))/min), although with restricted statistical power. Baseline samples could not differentiate between relative VO(2MAX) scores (mL(O(2))/kg/min). In conclusion, these data support that isoprene levels are dynamic in response to exercise. MDPI 2022-01-07 /pmc/articles/PMC8779231/ /pubmed/35056684 http://dx.doi.org/10.3390/molecules27020370 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Heaney, Liam M. Kang, Shuo Turner, Matthew A. Lindley, Martin R. Thomas, C. L. Paul The Impact of a Graded Maximal Exercise Protocol on Exhaled Volatile Organic Compounds: A Pilot Study |
title | The Impact of a Graded Maximal Exercise Protocol on Exhaled Volatile Organic Compounds: A Pilot Study |
title_full | The Impact of a Graded Maximal Exercise Protocol on Exhaled Volatile Organic Compounds: A Pilot Study |
title_fullStr | The Impact of a Graded Maximal Exercise Protocol on Exhaled Volatile Organic Compounds: A Pilot Study |
title_full_unstemmed | The Impact of a Graded Maximal Exercise Protocol on Exhaled Volatile Organic Compounds: A Pilot Study |
title_short | The Impact of a Graded Maximal Exercise Protocol on Exhaled Volatile Organic Compounds: A Pilot Study |
title_sort | impact of a graded maximal exercise protocol on exhaled volatile organic compounds: a pilot study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779231/ https://www.ncbi.nlm.nih.gov/pubmed/35056684 http://dx.doi.org/10.3390/molecules27020370 |
work_keys_str_mv | AT heaneyliamm theimpactofagradedmaximalexerciseprotocolonexhaledvolatileorganiccompoundsapilotstudy AT kangshuo theimpactofagradedmaximalexerciseprotocolonexhaledvolatileorganiccompoundsapilotstudy AT turnermatthewa theimpactofagradedmaximalexerciseprotocolonexhaledvolatileorganiccompoundsapilotstudy AT lindleymartinr theimpactofagradedmaximalexerciseprotocolonexhaledvolatileorganiccompoundsapilotstudy AT thomasclpaul theimpactofagradedmaximalexerciseprotocolonexhaledvolatileorganiccompoundsapilotstudy AT heaneyliamm impactofagradedmaximalexerciseprotocolonexhaledvolatileorganiccompoundsapilotstudy AT kangshuo impactofagradedmaximalexerciseprotocolonexhaledvolatileorganiccompoundsapilotstudy AT turnermatthewa impactofagradedmaximalexerciseprotocolonexhaledvolatileorganiccompoundsapilotstudy AT lindleymartinr impactofagradedmaximalexerciseprotocolonexhaledvolatileorganiccompoundsapilotstudy AT thomasclpaul impactofagradedmaximalexerciseprotocolonexhaledvolatileorganiccompoundsapilotstudy |