Cargando…
Analysis of Asymmetry in Active Split-Ring Resonators to Design Circulating-Current Eigenmode: Demonstration of Beamsteering and Focal-Length Control toward Reconfigurable Intelligent Surface
In this work, toward an intelligent radio environment for 5G/6G, design methodologies of active split-ring resonators (SRRs) for more efficient dynamic control of metasurfaces are investigated. The relationship between the excitation of circulating-current eigenmode and the asymmetric structure of S...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779269/ https://www.ncbi.nlm.nih.gov/pubmed/35062642 http://dx.doi.org/10.3390/s22020681 |
Sumario: | In this work, toward an intelligent radio environment for 5G/6G, design methodologies of active split-ring resonators (SRRs) for more efficient dynamic control of metasurfaces are investigated. The relationship between the excitation of circulating-current eigenmode and the asymmetric structure of SRRs is numerically analyzed, and it is clarified that the excitation of the circulating-current mode is difficult when the level of asymmetry of the current path is decreased by the addition of large capacitance such as from semiconductor-based devices. To avoid change in the asymmetry, we incorporated an additional gap (slit) in the SRRs, which enabled us to excite the circulating-current mode even when a large capacitance was implemented. Prototype devices were fabricated according to this design methodology, and by the control of the intensity/phase distribution, the variable focal-length and beamsteering capabilities of the transmitted waves were demonstrated, indicating the high effectiveness of the design. The presented design methodology can be applied not only to the demonstrated case of discrete varactors, but also to various other active metamaterials, such as semiconductor-integrated types for operating in the millimeter and submillimeter frequency bands as potential candidates for future 6G systems. |
---|