Cargando…

Droplet Flow Assisted Electrocatalytic Oxidation of Selected Alcohols under Ambient Condition

This study reports using a droplet flow assisted mechanism to enhance the electrocatalytic oxidation of benzyl alcohol, 2-phenoxyethanol, and hydroxymethylfurfural at room temperature. Cobalt phosphide (CoP) was employed as an active electrocatalyst to promote the oxidation of each of the individual...

Descripción completa

Detalles Bibliográficos
Autores principales: Suliman, Mohammed A., Al Aqad, Khaled M., Basheer, Chanbasha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779358/
https://www.ncbi.nlm.nih.gov/pubmed/35056693
http://dx.doi.org/10.3390/molecules27020382
Descripción
Sumario:This study reports using a droplet flow assisted mechanism to enhance the electrocatalytic oxidation of benzyl alcohol, 2-phenoxyethanol, and hydroxymethylfurfural at room temperature. Cobalt phosphide (CoP) was employed as an active electrocatalyst to promote the oxidation of each of the individual substrates. Surface analysis of the CoP electrocatalyst using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), as well as electrochemical characterization, revealed that it had excellent catalytic activity for each of the substrates studied. The combined droplet flow with the continuous flow electrochemical oxidation approach significantly enhanced the conversion and selectivity of the transformation reactions. The results of this investigation show that at an electrolysis potential of 1.3 V and ambient conditions, both the selectivity and yield of aldehyde from substrate conversion can reach 97.0%.