Cargando…
A Physics-Informed Convolutional Neural Network with Custom Loss Functions for Porosity Prediction in Laser Metal Deposition
Physics-informed machine learning is emerging through vast methodologies and in various applications. This paper discovers physics-based custom loss functions as an implementable solution to additive manufacturing (AM). Specifically, laser metal deposition (LMD) is an AM process where a laser beam m...
Autores principales: | McGowan, Erin, Gawade, Vidita, Guo, Weihong (Grace) |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779806/ https://www.ncbi.nlm.nih.gov/pubmed/35062455 http://dx.doi.org/10.3390/s22020494 |
Ejemplares similares
-
Design of Customize Interbody Fusion Cages of Ti64ELI with Gradient Porosity by Selective Laser Melting Process
por: Pan, Cheng-Tang, et al.
Publicado: (2021) -
Visualization of Customized Convolutional Neural Network for Natural Language Recognition
por: Singh, Tajinder Pal, et al.
Publicado: (2022) -
Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra †
por: Barton, Sinead, et al.
Publicado: (2021) -
CRNet: a multimodal deep convolutional neural network for customer revisit prediction
por: Park, Eunil
Publicado: (2023) -
Customize Deposit module
por: MARTIN MONTULL, Javier
Publicado: (2015)