Cargando…
Neural Fourier Energy Disaggregation
Deploying energy disaggregation models in the real-world is a challenging task. These models are usually deep neural networks and can be costly when running on a server or prohibitive when the target device has limited resources. Deep learning models are usually computationally expensive and they ha...
Autores principales: | Nalmpantis, Christoforos, Virtsionis Gkalinikis, Nikolaos, Vrakas, Dimitris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779842/ https://www.ncbi.nlm.nih.gov/pubmed/35062434 http://dx.doi.org/10.3390/s22020473 |
Ejemplares similares
-
Variational Regression for Multi-Target Energy Disaggregation
por: Virtsionis Gkalinikis, Nikolaos, et al.
Publicado: (2023) -
Household electricity consumption in Greece: A dataset based on socio-economic features
por: Mischos, Stavros, et al.
Publicado: (2023) -
2D Transformations of Energy Signals for Energy Disaggregation
por: Schirmer, Pascal A., et al.
Publicado: (2022) -
Energy Disaggregation Using Elastic Matching Algorithms
por: Schirmer, Pascal A., et al.
Publicado: (2020) -
Activation Energy of Aggregation-Disaggregation Self-Oscillation of Polymer Chain
por: Hara, Yusuke, et al.
Publicado: (2012)