Cargando…
Myocardial Afterload Is a Key Biomechanical Regulator of Atrioventricular Myocyte Differentiation in Zebrafish
Heart valve development is governed by both genetic and biomechanical inputs. Prior work has demonstrated that oscillating shear stress associated with blood flow is required for normal atrioventricular (AV) valve development. Cardiac afterload is defined as the pressure the ventricle must overcome...
Autores principales: | Ahuja, Neha, Ostwald, Paige, Gendernalik, Alex, Guzzolino, Elena, Pitto, Letizia, Bark, David, Garrity, Deborah M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779957/ https://www.ncbi.nlm.nih.gov/pubmed/35050232 http://dx.doi.org/10.3390/jcdd9010022 |
Ejemplares similares
-
Biomechanical Cues Direct Valvulogenesis
por: Ahuja, Neha, et al.
Publicado: (2020) -
Post-transcriptional Modulation of Sphingosine-1-Phosphate Receptor 1 by miR-19a Affects Cardiovascular Development in Zebrafish
por: Guzzolino, Elena, et al.
Publicado: (2018) -
The in vivo study of cardiac mechano-electric and mechano-mechanical coupling during heart development in zebrafish
por: Baillie, Jonathan S., et al.
Publicado: (2023) -
Afterload excess and myocardial performance
por: Jayam, Meghana, et al.
Publicado: (2013) -
New Insights into Mechanisms of Endocrine-Disrupting Chemicals in Thyroid Diseases: The Epigenetic Way
por: Pitto, Letizia, et al.
Publicado: (2020)