Cargando…
Deep-Learning Based Estimation of Dielectrophoretic Force
The ability to accurately quantify dielectrophoretic (DEP) force is critical in the development of high-efficiency microfluidic systems. This is the first reported work that combines a textile electrode-based DEP sensing system with deep learning in order to estimate the DEP forces invoked on microp...
Autores principales: | Ajala, Sunday, Jalajamony, Harikrishnan Muraleedharan, Fernandez, Renny Edwin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779967/ https://www.ncbi.nlm.nih.gov/pubmed/35056207 http://dx.doi.org/10.3390/mi13010041 |
Ejemplares similares
-
Comparing machine learning and deep learning regression frameworks for accurate prediction of dielectrophoretic force
por: Ajala, Sunday, et al.
Publicado: (2022) -
Non-Linear Cellular Dielectrophoretic Behavior Characterization Using Dielectrophoretic Tweezers-Based Force Spectroscopy inside a Microfluidic Device
por: Choi, Seungyeop, et al.
Publicado: (2018) -
Determination of the Dielectrophoretic Force Induced by the Photovoltaic Effect on Lithium Niobate
por: Meggiolaro, Alessio, et al.
Publicado: (2022) -
Sub–100 nm Nanoparticle Upconcentration in Flow by Dielectrophoretic Forces
por: Dimaki, Maria, et al.
Publicado: (2022) -
Automated Dielectrophoretic Tweezers-Based Force Spectroscopy System in a Microfluidic Device
por: Kim, Min Hyung, et al.
Publicado: (2017)