Cargando…

Structure Refinement and Fragmentation of Precipitates under Severe Plastic Deformation: A Review

During severe plastic deformation (SPD), the processes of lattice defect formation as well as their relaxation (annihilation) compete with each other. As a result, a dynamic equilibrium is established, and a steady state is reached after a certain strain value. Simultaneously, other kinetic processe...

Descripción completa

Detalles Bibliográficos
Autores principales: Straumal, Boris B., Kulagin, Roman, Klinger, Leonid, Rabkin, Eugen, Straumal, Petr B., Kogtenkova, Olga A., Baretzky, Brigitte
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779984/
https://www.ncbi.nlm.nih.gov/pubmed/35057318
http://dx.doi.org/10.3390/ma15020601
Descripción
Sumario:During severe plastic deformation (SPD), the processes of lattice defect formation as well as their relaxation (annihilation) compete with each other. As a result, a dynamic equilibrium is established, and a steady state is reached after a certain strain value. Simultaneously, other kinetic processes act in opposite directions and also compete with each other during SPD, such as grain refinement/growth, mechanical strengthening/softening, formation/decomposition of solid solution, etc. These competing processes also lead to dynamic equilibrium and result in a steady state (saturation), albeit after different strains. Among these steady-state phenomena, particle fragmentation during the second phase of SPD has received little attention. Available data indicate that precipitate fragmentation slows down with increasing strain, though saturation is achieved at higher strains than in the case of hardness or grain size. Moreover, one can consider the SPD-driven nanocrystallization in the amorphous phase as a process that is opposite to the fragmentation of precipitates. The size of these crystalline nanoprecipitates also saturates after a certain strain. The fragmentation of precipitates during SPD is the topic of this review.