Cargando…
An Improved End-to-End Autoencoder Based on Reinforcement Learning by Using Decision Tree for Optical Transceivers
In this paper, an improved end-to-end autoencoder based on reinforcement learning by using Decision Tree for optical transceivers is proposed and experimentally demonstrated. Transmitters and receivers are considered as an asymmetrical autoencoder combining a deep neural network and the Adaboost alg...
Autores principales: | Zhang, Qianwu, Wang, Zicong, Duan, Shuaihang, Cao, Bingyao, Wu, Yating, Chen, Jian, Zhang, Hongbo, Wang, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780006/ https://www.ncbi.nlm.nih.gov/pubmed/35056196 http://dx.doi.org/10.3390/mi13010031 |
Ejemplares similares
-
End-to-end Sinkhorn Autoencoder with Noise Generator
por: Deja, Kamil, et al.
Publicado: (2020) -
Improved adaptive impedance matching for RF front-end systems of wireless transceivers
por: Alibakhshikenari, Mohammad, et al.
Publicado: (2020) -
Digital compensation for analog front-ends: a new approach to wireless transceiver design
por: Horlin, François, et al.
Publicado: (2008) -
Optical transceivers for event triggers in the ATLAS phase-I upgrade
por: Zhang, L, et al.
Publicado: (2021) -
Description of test programs for the modules quad-transceiver, single-transceiver digital and single-transceiver hybrid
por: WOHRNE, S.
Publicado: (1980)