Cargando…
Electrochemical tracing of hypoxia glycolysis by carbon nanotube sensors, a new hallmark for intraoperative detection of suspicious margins to breast neoplasia
For most people, the first step in treatment is to take out the tumor (surgery), so precise and fast diagnosis of any sign of high‐risk and neoplastic cells, especially in surgical cavity margins, is significant. The frozen pathology method is the conventional standard of intraoperative diagnosis, b...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780057/ https://www.ncbi.nlm.nih.gov/pubmed/35079624 http://dx.doi.org/10.1002/btm2.10236 |
_version_ | 1784637736822505472 |
---|---|
author | Miripour, Zohreh Sadat Abbasvandi, Fereshteh Aghaee, Parisa NajafiKhoshnoo, Sahar Faramarzpour, Mahsa Mohaghegh, Pooneh Hoseinpour, Parisa Namdar, Naser Amiri, Morteza Hassanpour Ghafari, Hadi Zareie, Sarah Shojaeian, Fatemeh Sanati, Hassan Mapar, Mahna Sadeghian, Nastaran Akbari, Mohammad Esmaeil Khayamian, Mohammad Ali Abdolahad, Mohammad |
author_facet | Miripour, Zohreh Sadat Abbasvandi, Fereshteh Aghaee, Parisa NajafiKhoshnoo, Sahar Faramarzpour, Mahsa Mohaghegh, Pooneh Hoseinpour, Parisa Namdar, Naser Amiri, Morteza Hassanpour Ghafari, Hadi Zareie, Sarah Shojaeian, Fatemeh Sanati, Hassan Mapar, Mahna Sadeghian, Nastaran Akbari, Mohammad Esmaeil Khayamian, Mohammad Ali Abdolahad, Mohammad |
author_sort | Miripour, Zohreh Sadat |
collection | PubMed |
description | For most people, the first step in treatment is to take out the tumor (surgery), so precise and fast diagnosis of any sign of high‐risk and neoplastic cells, especially in surgical cavity margins, is significant. The frozen pathology method is the conventional standard of intraoperative diagnosis, but the low number of slides prepared from non‐fixed tissues prevents us from achieving a perfect diagnosis. Although many improvements in intraoperative margin detection were achieved, still real‐time detection of neoplastic lesions is crucial to improving diagnostic quality. Functionalized carbon nanotubes grown on the electrode needles lively and selectively determine the H(2)O(2) released from cancer/atypical cells through reverse Warburg effect and hypoxia assisted glycolysis pathways in a quantitative electrochemical manner. The study was carried out on cell lines, 57 in vivo mice models with breast cancer, and 258 fresh in vitro samples of breast cancer tumors. A real‐time electrotechnical system, named cancer diagnostic probe (CDP) (US Patent Pub. No.: US 2018/02991 A1, US 2021/0007638 A1, and US 2021/0022650 A1 [publications], and US 10,786,188 B1 [granted]), has been developed to find pre‐neoplastic/neoplastic cells in vivo in a quantitative electrochemical manner by tracing hypoxia glycolysis byproducts. Matched pathological evaluations with response peaks of CDP were found based on the presence of neoplasia (from atypia to invasive carcinoma) in live breast tissues. The ability of CDP to find neoplastic lesions in mice models in vivo and fresh breast tumors in vitro was verified with sensitivity and specificity of 95% and 97%, respectively. The system may help a surgeon assistant system for usage in the operating room after passing many trials and standard examinations in the future. |
format | Online Article Text |
id | pubmed-8780057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87800572022-01-24 Electrochemical tracing of hypoxia glycolysis by carbon nanotube sensors, a new hallmark for intraoperative detection of suspicious margins to breast neoplasia Miripour, Zohreh Sadat Abbasvandi, Fereshteh Aghaee, Parisa NajafiKhoshnoo, Sahar Faramarzpour, Mahsa Mohaghegh, Pooneh Hoseinpour, Parisa Namdar, Naser Amiri, Morteza Hassanpour Ghafari, Hadi Zareie, Sarah Shojaeian, Fatemeh Sanati, Hassan Mapar, Mahna Sadeghian, Nastaran Akbari, Mohammad Esmaeil Khayamian, Mohammad Ali Abdolahad, Mohammad Bioeng Transl Med Research Articles For most people, the first step in treatment is to take out the tumor (surgery), so precise and fast diagnosis of any sign of high‐risk and neoplastic cells, especially in surgical cavity margins, is significant. The frozen pathology method is the conventional standard of intraoperative diagnosis, but the low number of slides prepared from non‐fixed tissues prevents us from achieving a perfect diagnosis. Although many improvements in intraoperative margin detection were achieved, still real‐time detection of neoplastic lesions is crucial to improving diagnostic quality. Functionalized carbon nanotubes grown on the electrode needles lively and selectively determine the H(2)O(2) released from cancer/atypical cells through reverse Warburg effect and hypoxia assisted glycolysis pathways in a quantitative electrochemical manner. The study was carried out on cell lines, 57 in vivo mice models with breast cancer, and 258 fresh in vitro samples of breast cancer tumors. A real‐time electrotechnical system, named cancer diagnostic probe (CDP) (US Patent Pub. No.: US 2018/02991 A1, US 2021/0007638 A1, and US 2021/0022650 A1 [publications], and US 10,786,188 B1 [granted]), has been developed to find pre‐neoplastic/neoplastic cells in vivo in a quantitative electrochemical manner by tracing hypoxia glycolysis byproducts. Matched pathological evaluations with response peaks of CDP were found based on the presence of neoplasia (from atypia to invasive carcinoma) in live breast tissues. The ability of CDP to find neoplastic lesions in mice models in vivo and fresh breast tumors in vitro was verified with sensitivity and specificity of 95% and 97%, respectively. The system may help a surgeon assistant system for usage in the operating room after passing many trials and standard examinations in the future. John Wiley & Sons, Inc. 2021-06-14 /pmc/articles/PMC8780057/ /pubmed/35079624 http://dx.doi.org/10.1002/btm2.10236 Text en © 2021 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Miripour, Zohreh Sadat Abbasvandi, Fereshteh Aghaee, Parisa NajafiKhoshnoo, Sahar Faramarzpour, Mahsa Mohaghegh, Pooneh Hoseinpour, Parisa Namdar, Naser Amiri, Morteza Hassanpour Ghafari, Hadi Zareie, Sarah Shojaeian, Fatemeh Sanati, Hassan Mapar, Mahna Sadeghian, Nastaran Akbari, Mohammad Esmaeil Khayamian, Mohammad Ali Abdolahad, Mohammad Electrochemical tracing of hypoxia glycolysis by carbon nanotube sensors, a new hallmark for intraoperative detection of suspicious margins to breast neoplasia |
title | Electrochemical tracing of hypoxia glycolysis by carbon nanotube sensors, a new hallmark for intraoperative detection of suspicious margins to breast neoplasia |
title_full | Electrochemical tracing of hypoxia glycolysis by carbon nanotube sensors, a new hallmark for intraoperative detection of suspicious margins to breast neoplasia |
title_fullStr | Electrochemical tracing of hypoxia glycolysis by carbon nanotube sensors, a new hallmark for intraoperative detection of suspicious margins to breast neoplasia |
title_full_unstemmed | Electrochemical tracing of hypoxia glycolysis by carbon nanotube sensors, a new hallmark for intraoperative detection of suspicious margins to breast neoplasia |
title_short | Electrochemical tracing of hypoxia glycolysis by carbon nanotube sensors, a new hallmark for intraoperative detection of suspicious margins to breast neoplasia |
title_sort | electrochemical tracing of hypoxia glycolysis by carbon nanotube sensors, a new hallmark for intraoperative detection of suspicious margins to breast neoplasia |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780057/ https://www.ncbi.nlm.nih.gov/pubmed/35079624 http://dx.doi.org/10.1002/btm2.10236 |
work_keys_str_mv | AT miripourzohrehsadat electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT abbasvandifereshteh electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT aghaeeparisa electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT najafikhoshnoosahar electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT faramarzpourmahsa electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT mohagheghpooneh electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT hoseinpourparisa electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT namdarnaser electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT amirimortezahassanpour electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT ghafarihadi electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT zareiesarah electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT shojaeianfatemeh electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT sanatihassan electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT maparmahna electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT sadeghiannastaran electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT akbarimohammadesmaeil electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT khayamianmohammadali electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia AT abdolahadmohammad electrochemicaltracingofhypoxiaglycolysisbycarbonnanotubesensorsanewhallmarkforintraoperativedetectionofsuspiciousmarginstobreastneoplasia |