Cargando…
Interactive Deep Learning for Shelf Life Prediction of Muskmelons Based on an Active Learning Approach
A pivotal topic in agriculture and food monitoring is the assessment of the quality and ripeness of agricultural products by using non-destructive testing techniques. Acoustic testing offers a rapid in situ analysis of the state of the agricultural good, obtaining global information of its interior....
Autores principales: | Albert-Weiss, Dominique, Osman, Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780071/ https://www.ncbi.nlm.nih.gov/pubmed/35062374 http://dx.doi.org/10.3390/s22020414 |
Ejemplares similares
-
Development and optimization of processing techniques for intermediate moisture muskmelon chunks
por: Din, Ahmad, et al.
Publicado: (2019) -
A Phenotype-Based Approach for the Substrate Water Status Forecast of Greenhouse Netted Muskmelon
por: Chang, Liying, et al.
Publicado: (2019) -
Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.)
por: Ansari, Waquar Akhter, et al.
Publicado: (2019) -
Shelf Auditing Based on Image Classification Using Semi-Supervised Deep Learning to Increase On-Shelf Availability in Grocery Stores
por: Yilmazer, Ramiz, et al.
Publicado: (2021) -
Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon
por: Liu, Yi-Fei, et al.
Publicado: (2011)