Cargando…

Evaluation of an Active LF Tracking System and Data Processing Methods for Livestock Precision Farming in the Poultry Sector

Tracking technologies offer a way to monitor movement of many individuals over long time periods with minimal disturbances and could become a helpful tool for a variety of uses in animal agriculture, including health monitoring or selection of breeding traits that benefit welfare within intensive ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Montalcini, Camille Marie, Voelkl, Bernhard, Gómez, Yamenah, Gantner, Michael, Toscano, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780220/
https://www.ncbi.nlm.nih.gov/pubmed/35062620
http://dx.doi.org/10.3390/s22020659
Descripción
Sumario:Tracking technologies offer a way to monitor movement of many individuals over long time periods with minimal disturbances and could become a helpful tool for a variety of uses in animal agriculture, including health monitoring or selection of breeding traits that benefit welfare within intensive cage-free poultry farming. Herein, we present an active, low-frequency tracking system that distinguishes between five predefined zones within a commercial aviary. We aimed to evaluate both the processed and unprocessed datasets against a “ground truth” based on video observations. The two data processing methods aimed to filter false registrations, one with a simple deterministic approach and one with a tree-based classifier. We found the unprocessed data accurately determined birds’ presence/absence in each zone with an accuracy of 99% but overestimated the number of transitions taken by birds per zone, explaining only 23% of the actual variation. However, the two processed datasets were found to be suitable to monitor the number of transitions per individual, accounting for 91% and 99% of the actual variation, respectively. To further evaluate the tracking system, we estimated the error rate of registrations (by applying the classifier) in relation to three factors, which suggested a higher number of false registrations towards specific areas, periods with reduced humidity, and periods with reduced temperature. We concluded that the presented tracking system is well suited for commercial aviaries to measure individuals’ transitions and individuals’ presence/absence in predefined zones. Nonetheless, under these settings, data processing remains a necessary step in obtaining reliable data. For future work, we recommend the use of automatic calibration to improve the system’s performance and to envision finer movements.