Cargando…
A Novel Distribution for Representation of 6D Pose Uncertainty
The 6D Pose estimation is a crux in many applications, such as visual perception, autonomous navigation, and spacecraft motion. For robotic grasping, the cluttered and self-occlusion scenarios bring new challenges to the this field. Currently, society uses CNNs to solve this problem. The CNN models...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780226/ https://www.ncbi.nlm.nih.gov/pubmed/35056290 http://dx.doi.org/10.3390/mi13010126 |
_version_ | 1784637785390448640 |
---|---|
author | Zhang, Lei Shang, Huiliang Lin, Yandan |
author_facet | Zhang, Lei Shang, Huiliang Lin, Yandan |
author_sort | Zhang, Lei |
collection | PubMed |
description | The 6D Pose estimation is a crux in many applications, such as visual perception, autonomous navigation, and spacecraft motion. For robotic grasping, the cluttered and self-occlusion scenarios bring new challenges to the this field. Currently, society uses CNNs to solve this problem. The CNN models will suffer high uncertainty caused by the environmental factors and the object itself. These models usually maintain a Gaussian distribution, which is not suitable for the underlying manifold structure of the pose. Many works decouple rotation from the translation and quantify rotational uncertainty. Only a few works pay attention to the uncertainty of the 6D pose. This work proposes a distribution that can capture the uncertainty of the 6D pose parameterized by the dual quaternions, meanwhile, the proposed distribution takes the periodic nature of the underlying structure into account. The presented results include the normalization constant computation and parameter estimation techniques of the distribution. This work shows the benefits of the proposed distribution, which provides a more realistic explanation for the uncertainty in the 6D pose and eliminates the drawback inherited from the planar rigid motion. |
format | Online Article Text |
id | pubmed-8780226 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87802262022-01-22 A Novel Distribution for Representation of 6D Pose Uncertainty Zhang, Lei Shang, Huiliang Lin, Yandan Micromachines (Basel) Article The 6D Pose estimation is a crux in many applications, such as visual perception, autonomous navigation, and spacecraft motion. For robotic grasping, the cluttered and self-occlusion scenarios bring new challenges to the this field. Currently, society uses CNNs to solve this problem. The CNN models will suffer high uncertainty caused by the environmental factors and the object itself. These models usually maintain a Gaussian distribution, which is not suitable for the underlying manifold structure of the pose. Many works decouple rotation from the translation and quantify rotational uncertainty. Only a few works pay attention to the uncertainty of the 6D pose. This work proposes a distribution that can capture the uncertainty of the 6D pose parameterized by the dual quaternions, meanwhile, the proposed distribution takes the periodic nature of the underlying structure into account. The presented results include the normalization constant computation and parameter estimation techniques of the distribution. This work shows the benefits of the proposed distribution, which provides a more realistic explanation for the uncertainty in the 6D pose and eliminates the drawback inherited from the planar rigid motion. MDPI 2022-01-13 /pmc/articles/PMC8780226/ /pubmed/35056290 http://dx.doi.org/10.3390/mi13010126 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Lei Shang, Huiliang Lin, Yandan A Novel Distribution for Representation of 6D Pose Uncertainty |
title | A Novel Distribution for Representation of 6D Pose Uncertainty |
title_full | A Novel Distribution for Representation of 6D Pose Uncertainty |
title_fullStr | A Novel Distribution for Representation of 6D Pose Uncertainty |
title_full_unstemmed | A Novel Distribution for Representation of 6D Pose Uncertainty |
title_short | A Novel Distribution for Representation of 6D Pose Uncertainty |
title_sort | novel distribution for representation of 6d pose uncertainty |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780226/ https://www.ncbi.nlm.nih.gov/pubmed/35056290 http://dx.doi.org/10.3390/mi13010126 |
work_keys_str_mv | AT zhanglei anoveldistributionforrepresentationof6dposeuncertainty AT shanghuiliang anoveldistributionforrepresentationof6dposeuncertainty AT linyandan anoveldistributionforrepresentationof6dposeuncertainty AT zhanglei noveldistributionforrepresentationof6dposeuncertainty AT shanghuiliang noveldistributionforrepresentationof6dposeuncertainty AT linyandan noveldistributionforrepresentationof6dposeuncertainty |