Cargando…
A Novel Distribution for Representation of 6D Pose Uncertainty
The 6D Pose estimation is a crux in many applications, such as visual perception, autonomous navigation, and spacecraft motion. For robotic grasping, the cluttered and self-occlusion scenarios bring new challenges to the this field. Currently, society uses CNNs to solve this problem. The CNN models...
Autores principales: | Zhang, Lei, Shang, Huiliang, Lin, Yandan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780226/ https://www.ncbi.nlm.nih.gov/pubmed/35056290 http://dx.doi.org/10.3390/mi13010126 |
Ejemplares similares
-
Orientation Uncertainty Characteristics of Some Pose Measuring Systems
por: Franaszek, Marek, et al.
Publicado: (2017) -
MagicCubePose, A more comprehensive 6D pose estimation network
por: Li, Fudong, et al.
Publicado: (2023) -
Human Representation of Visuo-Motor Uncertainty as Mixtures of Orthogonal Basis Distributions
por: Zhang, Hang, et al.
Publicado: (2015) -
Estimation of 6D Object Pose Using a 2D Bounding Box
por: Hong, Yong, et al.
Publicado: (2021) -
DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
por: Jin, Lei, et al.
Publicado: (2021)