Cargando…
Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle
Sleep is a state in which important restorative and anabolic processes occur. Understanding changes of these metabolic processes during the circadian rhythm in the brain is crucial to elucidate neurophysiological mechanisms important for sleep function. Investigation of amino acid modifications and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780251/ https://www.ncbi.nlm.nih.gov/pubmed/35050142 http://dx.doi.org/10.3390/metabo12010021 |
_version_ | 1784637791267717120 |
---|---|
author | Vallianatou, Theodosia Bèchet, Nicholas B. Correia, Mario S. P. Lundgaard, Iben Globisch, Daniel |
author_facet | Vallianatou, Theodosia Bèchet, Nicholas B. Correia, Mario S. P. Lundgaard, Iben Globisch, Daniel |
author_sort | Vallianatou, Theodosia |
collection | PubMed |
description | Sleep is a state in which important restorative and anabolic processes occur. Understanding changes of these metabolic processes during the circadian rhythm in the brain is crucial to elucidate neurophysiological mechanisms important for sleep function. Investigation of amino acid modifications and dipeptides has recently emerged as a valuable approach in the metabolic profiling of the central nervous system. Nonetheless, very little is known about the effects of sleep on the brain levels of amino acid analogues. In the present study, we examined brain regional sleep-induced alterations selective for modified amino acids and dipeptides using Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) based metabolomics. Our approach enabled the detection and identification of numerous amino acid-containing metabolites in the cortex, the hippocampus, the midbrain, and the cerebellum. In particular, analogues of the aromatic amino acids phenylalanine, tyrosine and tryptophan were significantly altered during sleep in the investigated brain regions. Cortical levels of medium and long chain N-acyl glycines were higher during sleep. Regional specific changes were also detected, especially related to tyrosine analogues in the hippocampus and the cerebellum. Our findings demonstrate a strong correlation between circadian rhythms and amino acid metabolism specific for different brain regions that provide previously unknown insights in brain metabolism. |
format | Online Article Text |
id | pubmed-8780251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87802512022-01-22 Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle Vallianatou, Theodosia Bèchet, Nicholas B. Correia, Mario S. P. Lundgaard, Iben Globisch, Daniel Metabolites Article Sleep is a state in which important restorative and anabolic processes occur. Understanding changes of these metabolic processes during the circadian rhythm in the brain is crucial to elucidate neurophysiological mechanisms important for sleep function. Investigation of amino acid modifications and dipeptides has recently emerged as a valuable approach in the metabolic profiling of the central nervous system. Nonetheless, very little is known about the effects of sleep on the brain levels of amino acid analogues. In the present study, we examined brain regional sleep-induced alterations selective for modified amino acids and dipeptides using Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) based metabolomics. Our approach enabled the detection and identification of numerous amino acid-containing metabolites in the cortex, the hippocampus, the midbrain, and the cerebellum. In particular, analogues of the aromatic amino acids phenylalanine, tyrosine and tryptophan were significantly altered during sleep in the investigated brain regions. Cortical levels of medium and long chain N-acyl glycines were higher during sleep. Regional specific changes were also detected, especially related to tyrosine analogues in the hippocampus and the cerebellum. Our findings demonstrate a strong correlation between circadian rhythms and amino acid metabolism specific for different brain regions that provide previously unknown insights in brain metabolism. MDPI 2021-12-27 /pmc/articles/PMC8780251/ /pubmed/35050142 http://dx.doi.org/10.3390/metabo12010021 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vallianatou, Theodosia Bèchet, Nicholas B. Correia, Mario S. P. Lundgaard, Iben Globisch, Daniel Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle |
title | Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle |
title_full | Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle |
title_fullStr | Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle |
title_full_unstemmed | Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle |
title_short | Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle |
title_sort | regional brain analysis of modified amino acids and dipeptides during the sleep/wake cycle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780251/ https://www.ncbi.nlm.nih.gov/pubmed/35050142 http://dx.doi.org/10.3390/metabo12010021 |
work_keys_str_mv | AT vallianatoutheodosia regionalbrainanalysisofmodifiedaminoacidsanddipeptidesduringthesleepwakecycle AT bechetnicholasb regionalbrainanalysisofmodifiedaminoacidsanddipeptidesduringthesleepwakecycle AT correiamariosp regionalbrainanalysisofmodifiedaminoacidsanddipeptidesduringthesleepwakecycle AT lundgaardiben regionalbrainanalysisofmodifiedaminoacidsanddipeptidesduringthesleepwakecycle AT globischdaniel regionalbrainanalysisofmodifiedaminoacidsanddipeptidesduringthesleepwakecycle |