Cargando…
Terephthalaldehyde–Phenolic Resins as a Solid-Phase Extraction System for the Recovery of Rare-Earth Elements
Rare-earth elements (REEs) are involved in most high technology devices and have become critical for many countries. The progress of processes for the extraction and recovery of REEs is therefore essential. Liquid–solid extraction methods are an attractive alternative to the conventional solvent ext...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780303/ https://www.ncbi.nlm.nih.gov/pubmed/35054717 http://dx.doi.org/10.3390/polym14020311 |
_version_ | 1784637805085851648 |
---|---|
author | Oye Auke, Ruth Arrachart, Guilhem Tavernier, Romain David, Ghislain Pellet-Rostaing, Stéphane |
author_facet | Oye Auke, Ruth Arrachart, Guilhem Tavernier, Romain David, Ghislain Pellet-Rostaing, Stéphane |
author_sort | Oye Auke, Ruth |
collection | PubMed |
description | Rare-earth elements (REEs) are involved in most high technology devices and have become critical for many countries. The progress of processes for the extraction and recovery of REEs is therefore essential. Liquid–solid extraction methods are an attractive alternative to the conventional solvent extraction process used for the separation and/or purification of REEs. For this purpose, a solid-phase extraction system was investigated for the extraction and valorization of REEs. Ion-exchange resins were synthesized involving the condensation of terephthalaldehyde with resorcinol under alkaline conditions. The terephthalaldehyde, which is a non-hazardous aromatic dialdehyde, was used as an alternative to formaldehyde that is toxic and traditionally involved to prepare phenolic ion-exchange resins. The resulting formaldehyde-free resole-type phenolic resins were characterized and their ion-exchange capacity was investigated in regard to the extraction of rare-earth elements. We herein present a promising formaldehyde and phenol-free as a potential candidate for solid–liquid extraction REE with a capacity higher than 50 mg/g and the possibility to back-extract the REEs by a striping step using a 2 M HNO(3) solution. |
format | Online Article Text |
id | pubmed-8780303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87803032022-01-22 Terephthalaldehyde–Phenolic Resins as a Solid-Phase Extraction System for the Recovery of Rare-Earth Elements Oye Auke, Ruth Arrachart, Guilhem Tavernier, Romain David, Ghislain Pellet-Rostaing, Stéphane Polymers (Basel) Article Rare-earth elements (REEs) are involved in most high technology devices and have become critical for many countries. The progress of processes for the extraction and recovery of REEs is therefore essential. Liquid–solid extraction methods are an attractive alternative to the conventional solvent extraction process used for the separation and/or purification of REEs. For this purpose, a solid-phase extraction system was investigated for the extraction and valorization of REEs. Ion-exchange resins were synthesized involving the condensation of terephthalaldehyde with resorcinol under alkaline conditions. The terephthalaldehyde, which is a non-hazardous aromatic dialdehyde, was used as an alternative to formaldehyde that is toxic and traditionally involved to prepare phenolic ion-exchange resins. The resulting formaldehyde-free resole-type phenolic resins were characterized and their ion-exchange capacity was investigated in regard to the extraction of rare-earth elements. We herein present a promising formaldehyde and phenol-free as a potential candidate for solid–liquid extraction REE with a capacity higher than 50 mg/g and the possibility to back-extract the REEs by a striping step using a 2 M HNO(3) solution. MDPI 2022-01-13 /pmc/articles/PMC8780303/ /pubmed/35054717 http://dx.doi.org/10.3390/polym14020311 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Oye Auke, Ruth Arrachart, Guilhem Tavernier, Romain David, Ghislain Pellet-Rostaing, Stéphane Terephthalaldehyde–Phenolic Resins as a Solid-Phase Extraction System for the Recovery of Rare-Earth Elements |
title | Terephthalaldehyde–Phenolic Resins as a Solid-Phase Extraction System for the Recovery of Rare-Earth Elements |
title_full | Terephthalaldehyde–Phenolic Resins as a Solid-Phase Extraction System for the Recovery of Rare-Earth Elements |
title_fullStr | Terephthalaldehyde–Phenolic Resins as a Solid-Phase Extraction System for the Recovery of Rare-Earth Elements |
title_full_unstemmed | Terephthalaldehyde–Phenolic Resins as a Solid-Phase Extraction System for the Recovery of Rare-Earth Elements |
title_short | Terephthalaldehyde–Phenolic Resins as a Solid-Phase Extraction System for the Recovery of Rare-Earth Elements |
title_sort | terephthalaldehyde–phenolic resins as a solid-phase extraction system for the recovery of rare-earth elements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780303/ https://www.ncbi.nlm.nih.gov/pubmed/35054717 http://dx.doi.org/10.3390/polym14020311 |
work_keys_str_mv | AT oyeaukeruth terephthalaldehydephenolicresinsasasolidphaseextractionsystemfortherecoveryofrareearthelements AT arrachartguilhem terephthalaldehydephenolicresinsasasolidphaseextractionsystemfortherecoveryofrareearthelements AT tavernierromain terephthalaldehydephenolicresinsasasolidphaseextractionsystemfortherecoveryofrareearthelements AT davidghislain terephthalaldehydephenolicresinsasasolidphaseextractionsystemfortherecoveryofrareearthelements AT pelletrostaingstephane terephthalaldehydephenolicresinsasasolidphaseextractionsystemfortherecoveryofrareearthelements |