Cargando…
A Fuzzy Fusion Rotating Machinery Fault Diagnosis Framework Based on the Enhancement Deep Convolutional Neural Networks
Some artificial intelligence algorithms have gained much attention in the rotating machinery fault diagnosis due to their robust nonlinear regression properties. In addition, existing deep learning algorithms are usually dependent on single signal features, which would lead to the loss of some infor...
Autores principales: | Yang, Daoguang, Karimi, Hamid Reza, Gelman, Len |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780327/ https://www.ncbi.nlm.nih.gov/pubmed/35062632 http://dx.doi.org/10.3390/s22020671 |
Ejemplares similares
-
A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
por: Ma, Shangjun, et al.
Publicado: (2019) -
Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
por: Li, Hongmei, et al.
Publicado: (2020) -
Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
por: Yan, Jing, et al.
Publicado: (2021) -
Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis
por: Cai, Yuxiang, et al.
Publicado: (2022) -
Novel Investigation of Higher Order Spectral Technologies for Fault Diagnosis of Motor-Based Rotating Machinery
por: Ciszewski, Tomasz, et al.
Publicado: (2023)