Cargando…

Cancer Type Classification in Liquid Biopsies Based on Sparse Mutational Profiles Enabled through Data Augmentation and Integration

Identifying the cell of origin of cancer is important to guide treatment decisions. Machine learning approaches have been proposed to classify the cell of origin based on somatic mutation profiles from solid biopsies. However, solid biopsies can cause complications and certain tumors are not accessi...

Descripción completa

Detalles Bibliográficos
Autores principales: Danyi, Alexandra, Jager, Myrthe, de Ridder, Jeroen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780455/
https://www.ncbi.nlm.nih.gov/pubmed/35054395
http://dx.doi.org/10.3390/life12010001
Descripción
Sumario:Identifying the cell of origin of cancer is important to guide treatment decisions. Machine learning approaches have been proposed to classify the cell of origin based on somatic mutation profiles from solid biopsies. However, solid biopsies can cause complications and certain tumors are not accessible. Liquid biopsies are promising alternatives but their somatic mutation profile is sparse and current machine learning models fail to perform in this setting. We propose an improved method to deal with sparsity in liquid biopsy data. Firstly, data augmentation is performed on sparse data to enhance model robustness. Secondly, we employ data integration to merge information from: (i) SNV density; (ii) SNVs in driver genes and (iii) trinucleotide motifs. Our adapted method achieves an average accuracy of 0.88 and 0.65 on data where only 70% and 2% of SNVs are retained, compared to 0.83 and 0.41 with the original model, respectively. The method and results presented here open the way for application of machine learning in the detection of the cell of origin of cancer from liquid biopsy data.