Cargando…
Cancer Type Classification in Liquid Biopsies Based on Sparse Mutational Profiles Enabled through Data Augmentation and Integration
Identifying the cell of origin of cancer is important to guide treatment decisions. Machine learning approaches have been proposed to classify the cell of origin based on somatic mutation profiles from solid biopsies. However, solid biopsies can cause complications and certain tumors are not accessi...
Autores principales: | Danyi, Alexandra, Jager, Myrthe, de Ridder, Jeroen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780455/ https://www.ncbi.nlm.nih.gov/pubmed/35054395 http://dx.doi.org/10.3390/life12010001 |
Ejemplares similares
-
Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data
por: Mohren, Thomas L., et al.
Publicado: (2018) -
Medulloblastoma: From TP53 Mutations to Molecular Classification and Liquid Biopsy
por: Eibl, Robert H., et al.
Publicado: (2023) -
Analysis of solid tumor mutation profiles in liquid biopsy
por: Balaji, Sai A., et al.
Publicado: (2018) -
Augmenting Multi-Instance Multilabel Learning with Sparse Bayesian Models for Skin Biopsy Image Analysis
por: Zhang, Gang, et al.
Publicado: (2014) -
Focused Ultrasound-enabled Brain Tumor Liquid Biopsy
por: Zhu, Lifei, et al.
Publicado: (2018)