Cargando…
MEMe: A Mutually Enhanced Modeling Method for Efficient and Effective Human Pose Estimation
In this paper, a mutually enhanced modeling method (MEMe) is presented for human pose estimation, which focuses on enhancing lightweight model performance, but with low complexity. To obtain higher accuracy, a traditional model scale is largely expanded with heavy deployment difficulties. However, f...
Autores principales: | Li, Jie, Wang, Zhixing, Qi, Bo, Zhang, Jianlin, Yang, Hu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780536/ https://www.ncbi.nlm.nih.gov/pubmed/35062592 http://dx.doi.org/10.3390/s22020632 |
Ejemplares similares
-
The MEME Suite
por: Bailey, Timothy L., et al.
Publicado: (2015) -
MEMe: An Accurate Maximum Entropy Method for Efficient Approximations in Large-Scale Machine Learning
por: Granziol, Diego, et al.
Publicado: (2019) -
What Do You Meme, Professor? An Experiment Using “Memes” in Pharmacy Education
por: Brown, Joshua D.
Publicado: (2020) -
Memes: A motif analysis environment in R using tools from the MEME Suite
por: Nystrom, Spencer L., et al.
Publicado: (2021) -
SSA Net: Small Scale-Aware Enhancement Network for Human Pose Estimation
por: Li, Shaohua, et al.
Publicado: (2023)