Cargando…

Characterization and Biological Activity of a Novel Exopolysaccharide Produced by Pediococcus pentosaceus SSC–12 from Silage

In this study, 22 strains of exopolysaccharides-producing lactic acid bacteria were isolated from silage, and the strain SSC–12 with the highest exopolysaccharide (EPS) production was used as the test strain. The SSC–12 was identified as Pediococcus pentosaceus, based upon 16S rDNA gene sequencing a...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Yang, Li, Xinqin, Tian, Rong, Tang, Ruxue, Zhang, Jianguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780647/
https://www.ncbi.nlm.nih.gov/pubmed/35056471
http://dx.doi.org/10.3390/microorganisms10010018
Descripción
Sumario:In this study, 22 strains of exopolysaccharides-producing lactic acid bacteria were isolated from silage, and the strain SSC–12 with the highest exopolysaccharide (EPS) production was used as the test strain. The SSC–12 was identified as Pediococcus pentosaceus, based upon 16S rDNA gene sequencing and Neighbor Joining (NJ) phylogenetic analysis. The analysis of the kinetic results of EPS generation of SSC–12 showed that the EPS generation reached the maximum value at 20 h of culture. The characterization study showed the EPS produced by SSC–12 was a homogeneous heteropolysaccharide comprising glucose (42.6%), mannose (28.9%), galactose (16.2%), arabinose (9.4%), and rhamnose (2.9%). The EPS had good antioxidant activity, especially the activity of scavenging hydroxyl free radicals. At the same time, the EPS also had strong antibacterial ability and could completely inhibit the growth of Staphylococcus aureus. The EPS produced by the Pediococcus pentosaceus SSC–12 can be used as a biologically active product with potential application prospects in the feed, food, and pharmaceutical industries.