Cargando…

An Eco-Friendly Acid Leaching Strategy for Dealkalization of Red Mud by Controlling Phase Transformation

The alkaline components in red mud represent one of the crucial factors restricting its application, especially for the construction and building industry. The phase state of alkaline components has a significant influence on the dealkalization of red mud. In this work, an environmentally friendly a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jiaming, Lei, Tianyu, Wang, Beibei, Ma, Shuwei, Lin, Yulong, Lu, Xiaolei, Ye, Zhengmao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780678/
https://www.ncbi.nlm.nih.gov/pubmed/35057302
http://dx.doi.org/10.3390/ma15020580
Descripción
Sumario:The alkaline components in red mud represent one of the crucial factors restricting its application, especially for the construction and building industry. The phase state of alkaline components has a significant influence on the dealkalization of red mud. In this work, an environmentally friendly acid leaching strategy is proposed by controlling the phase transformation of red mud during active roasting pretreatment. With a moderate roasting temperature, the alkaline component is prevented from converting into insoluble phases. After acid leaching with a low concentration of 0.1 M, a high dealkalization rate of 92.8% is obtained. Besides, the leachate is neutral (pH = 7) and the valuable metals in red mud are well preserved, manifesting a high selectivity and efficiency of diluted acid leaching. The calcination experiment further confirms the practicability of the strategy in the construction field, where the cementitious minerals can be formed in large quantities. Compared with the traditional acid leaching routes, the diluted acid leaching strategy in this work is acid saving with low valuable element consumption. Meanwhile, the secondary pollution issue can be alleviated. Hence, the findings in this work provide a feasible approach for the separation and recovery of alkali and resource utilization of red mud.