Cargando…
Osteoconductive Effect of a Nanocomposite Membrane Treated with UV Radiation
Modulation of the bio-regenerative characteristics of materials is an indispensable requirement in tissue engineering. Particularly, in bone tissue engineering, the promotion of the osteoconductive phenomenon determines the elemental property of a material be used therapeutically. In addition to the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780835/ https://www.ncbi.nlm.nih.gov/pubmed/35054693 http://dx.doi.org/10.3390/polym14020289 |
Sumario: | Modulation of the bio-regenerative characteristics of materials is an indispensable requirement in tissue engineering. Particularly, in bone tissue engineering, the promotion of the osteoconductive phenomenon determines the elemental property of a material be used therapeutically. In addition to the chemical qualities of the constituent materials, the three-dimensional surface structure plays a fundamental role that various methods are expected to modulate in a number of ways, one most promising of which is the use of different types of radiation. In the present manuscript, we demonstrate in a calvarial defect model, that treatment with ultraviolet irradiation allows modification of the osteoconductive characteristics in a biomaterial formed by gelatin and chitosan, together with the inclusion of hydroxyapatite and titanium oxide nanoparticles. |
---|