Cargando…
Oral drug delivery for immunoengineering
The systemic pharmacotherapeutic efficacy of immunomodulatory drugs is heavily influenced by its route of administration. A few common routes for the systemic delivery of immunotherapeutics are intravenous, intraperitoneal, and intramuscular injections. However, the development of novel biomaterials...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780903/ https://www.ncbi.nlm.nih.gov/pubmed/35111945 http://dx.doi.org/10.1002/btm2.10243 |
Sumario: | The systemic pharmacotherapeutic efficacy of immunomodulatory drugs is heavily influenced by its route of administration. A few common routes for the systemic delivery of immunotherapeutics are intravenous, intraperitoneal, and intramuscular injections. However, the development of novel biomaterials, in adjunct to current progress in immunoengineering, is providing an exciting area of interest for oral drug delivery for systemic targeting. Oral immunotherapeutic delivery is a highly preferred route of administration due to its ease of administration, higher patient compliance, and increased ability to generate specialized immune responses. However, the harsh environment and slow systemic absorption, due to various biological barriers, reduces the immunotherapeutic bioavailability, and in turn prevents widespread use of oral delivery. Nonetheless, cutting edge biomaterials are being synthesized to combat these biological barriers within the gastrointestinal (GI) tract for the enhancement of drug bioavailability and targeting the immune system. For example, advancements in biomaterials and synthesized drug agents have provided distinctive methods to promote localized drug absorption for the modulation of local or systemic immune responses. Additionally, novel breakthroughs in the immunoengineering field show promise in the development of vaccine delivery systems for disease prevention as well as combating autoimmune diseases, inflammatory diseases, and cancer. This review will discuss current progress made within the field of biomaterials and drug delivery systems to enhance oral immunotherapeutic availability, and how these new delivery platforms can be utilized to deliver immunotherapeutics for resolution of immune‐related diseases. |
---|