Cargando…
Synthesis of Ti-Al-xNb Ternary Alloys via Laser-Engineered Net Shaping for Biomedical Application: Densification, Electrochemical and Mechanical Properties Studies
The lives of many people around the world are impaired and shortened mostly by cardiovascular diseases (CVD). Despite the fact that medical interventions and surgical heart transplants may improve the lives of patients suffering from cardiovascular disease, the cost of treatments and securing a perf...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781035/ https://www.ncbi.nlm.nih.gov/pubmed/35057262 http://dx.doi.org/10.3390/ma15020544 |
_version_ | 1784637990143787008 |
---|---|
author | Kanyane, Lehlogonolo Rudolf Popoola, Abimbola Patricia Idowu Pityana, Sisa Tlotleng, Monnamme |
author_facet | Kanyane, Lehlogonolo Rudolf Popoola, Abimbola Patricia Idowu Pityana, Sisa Tlotleng, Monnamme |
author_sort | Kanyane, Lehlogonolo Rudolf |
collection | PubMed |
description | The lives of many people around the world are impaired and shortened mostly by cardiovascular diseases (CVD). Despite the fact that medical interventions and surgical heart transplants may improve the lives of patients suffering from cardiovascular disease, the cost of treatments and securing a perfect donor are aspects that compel patients to consider cheaper and less invasive therapies. The use of synthetic biomaterials such as titanium-based implants are an alternative for cardiac repair and regeneration. In this work, an in situ development of Ti-Al-xNb alloys were synthesized via laser additive manufacturing for biomedical application. The effect of Nb composition on Ti-Al was investigated. The microstructural evolution was characterized using a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). A potentiodynamic polarization technique was utilized to investigate the corrosion behavior of TiAl-Nb in 3.5% NaCl. The microhardness and corrosion behaviour of the synthesized Ti-Al-Nb alloys were found to be dependent on laser-processing parameters. The microhardness performance of the samples increased with an increase in the Nb feed rate to the Ti-Al alloy system. Maximum microhardness of 699.8 HVN was evident at 0.061 g/min while at 0.041 g/min the microhardness was 515.8 HVN at Nb gas carrier of 1L/min, respectively. |
format | Online Article Text |
id | pubmed-8781035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87810352022-01-22 Synthesis of Ti-Al-xNb Ternary Alloys via Laser-Engineered Net Shaping for Biomedical Application: Densification, Electrochemical and Mechanical Properties Studies Kanyane, Lehlogonolo Rudolf Popoola, Abimbola Patricia Idowu Pityana, Sisa Tlotleng, Monnamme Materials (Basel) Article The lives of many people around the world are impaired and shortened mostly by cardiovascular diseases (CVD). Despite the fact that medical interventions and surgical heart transplants may improve the lives of patients suffering from cardiovascular disease, the cost of treatments and securing a perfect donor are aspects that compel patients to consider cheaper and less invasive therapies. The use of synthetic biomaterials such as titanium-based implants are an alternative for cardiac repair and regeneration. In this work, an in situ development of Ti-Al-xNb alloys were synthesized via laser additive manufacturing for biomedical application. The effect of Nb composition on Ti-Al was investigated. The microstructural evolution was characterized using a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). A potentiodynamic polarization technique was utilized to investigate the corrosion behavior of TiAl-Nb in 3.5% NaCl. The microhardness and corrosion behaviour of the synthesized Ti-Al-Nb alloys were found to be dependent on laser-processing parameters. The microhardness performance of the samples increased with an increase in the Nb feed rate to the Ti-Al alloy system. Maximum microhardness of 699.8 HVN was evident at 0.061 g/min while at 0.041 g/min the microhardness was 515.8 HVN at Nb gas carrier of 1L/min, respectively. MDPI 2022-01-12 /pmc/articles/PMC8781035/ /pubmed/35057262 http://dx.doi.org/10.3390/ma15020544 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kanyane, Lehlogonolo Rudolf Popoola, Abimbola Patricia Idowu Pityana, Sisa Tlotleng, Monnamme Synthesis of Ti-Al-xNb Ternary Alloys via Laser-Engineered Net Shaping for Biomedical Application: Densification, Electrochemical and Mechanical Properties Studies |
title | Synthesis of Ti-Al-xNb Ternary Alloys via Laser-Engineered Net Shaping for Biomedical Application: Densification, Electrochemical and Mechanical Properties Studies |
title_full | Synthesis of Ti-Al-xNb Ternary Alloys via Laser-Engineered Net Shaping for Biomedical Application: Densification, Electrochemical and Mechanical Properties Studies |
title_fullStr | Synthesis of Ti-Al-xNb Ternary Alloys via Laser-Engineered Net Shaping for Biomedical Application: Densification, Electrochemical and Mechanical Properties Studies |
title_full_unstemmed | Synthesis of Ti-Al-xNb Ternary Alloys via Laser-Engineered Net Shaping for Biomedical Application: Densification, Electrochemical and Mechanical Properties Studies |
title_short | Synthesis of Ti-Al-xNb Ternary Alloys via Laser-Engineered Net Shaping for Biomedical Application: Densification, Electrochemical and Mechanical Properties Studies |
title_sort | synthesis of ti-al-xnb ternary alloys via laser-engineered net shaping for biomedical application: densification, electrochemical and mechanical properties studies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781035/ https://www.ncbi.nlm.nih.gov/pubmed/35057262 http://dx.doi.org/10.3390/ma15020544 |
work_keys_str_mv | AT kanyanelehlogonolorudolf synthesisoftialxnbternaryalloysvialaserengineerednetshapingforbiomedicalapplicationdensificationelectrochemicalandmechanicalpropertiesstudies AT popoolaabimbolapatriciaidowu synthesisoftialxnbternaryalloysvialaserengineerednetshapingforbiomedicalapplicationdensificationelectrochemicalandmechanicalpropertiesstudies AT pityanasisa synthesisoftialxnbternaryalloysvialaserengineerednetshapingforbiomedicalapplicationdensificationelectrochemicalandmechanicalpropertiesstudies AT tlotlengmonnamme synthesisoftialxnbternaryalloysvialaserengineerednetshapingforbiomedicalapplicationdensificationelectrochemicalandmechanicalpropertiesstudies |