Cargando…
An Efficient Pareto Optimal Resource Allocation Scheme in Cognitive Radio-Based Internet of Things Networks
The high data rates detail that internet-connected devices have been increasing exponentially. Cognitive radio (CR) is an auspicious technology used to address the resource shortage issue in wireless IoT networks. Resource optimization is considered a non-convex and nondeterministic polynomial (NP)...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781079/ https://www.ncbi.nlm.nih.gov/pubmed/35062409 http://dx.doi.org/10.3390/s22020451 |
Sumario: | The high data rates detail that internet-connected devices have been increasing exponentially. Cognitive radio (CR) is an auspicious technology used to address the resource shortage issue in wireless IoT networks. Resource optimization is considered a non-convex and nondeterministic polynomial (NP) complete problem within CR-based Internet of Things (IoT) networks (CR-IoT). Moreover, the combined optimization of conflicting objectives is a challenging issue in CR-IoT networks. In this paper, energy efficiency (EE) and spectral efficiency (SE) are considered as conflicting optimization objectives. This research work proposed a hybrid tabu search-based stimulated algorithm (HTSA) in order to achieve Pareto optimality between EE and SE. In addition, the fuzzy-based decision is employed to achieve better Pareto optimality. The performance of the proposed HTSA approach is analyzed using different resource allocation parameters and validated through simulation results. |
---|