Cargando…

Extending the Coding Potential of Viral Genomes with Overlapping Antisense ORFs: A Case for the De Novo Creation of the Gene Encoding the Antisense Protein ASP of HIV-1

Gene overprinting occurs when point mutations within a genomic region with an existing coding sequence create a new one in another reading frame. This process is quite frequent in viral genomes either to maximize the amount of information that they encode or in response to strong selective pressure....

Descripción completa

Detalles Bibliográficos
Autores principales: Pavesi, Angelo, Romerio, Fabio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781085/
https://www.ncbi.nlm.nih.gov/pubmed/35062351
http://dx.doi.org/10.3390/v14010146
_version_ 1784638004302708736
author Pavesi, Angelo
Romerio, Fabio
author_facet Pavesi, Angelo
Romerio, Fabio
author_sort Pavesi, Angelo
collection PubMed
description Gene overprinting occurs when point mutations within a genomic region with an existing coding sequence create a new one in another reading frame. This process is quite frequent in viral genomes either to maximize the amount of information that they encode or in response to strong selective pressure. The most frequent scenario involves two different reading frames in the same DNA strand (sense overlap). Much less frequent are cases of overlapping genes that are encoded on opposite DNA strands (antisense overlap). One such example is the antisense ORF, asp in the minus strand of the HIV-1 genome overlapping the env gene. The asp gene is highly conserved in pandemic HIV-1 strains of group M, and it is absent in non-pandemic HIV-1 groups, HIV-2, and lentiviruses infecting non-human primates, suggesting that the ~190-amino acid protein that is expressed from this gene (ASP) may play a role in virus spread. While the function of ASP in the virus life cycle remains to be elucidated, mounting evidence from several research groups indicates that ASP is expressed in vivo. There are two alternative hypotheses that could be envisioned to explain the origin of the asp ORF. On one hand, asp may have originally been present in the ancestor of contemporary lentiviruses, and subsequently lost in all descendants except for most HIV-1 strains of group M due to selective advantage. Alternatively, the asp ORF may have originated very recently with the emergence of group M HIV-1 strains from SIVcpz. Here, we used a combination of computational and statistical approaches to study the genomic region of env in primate lentiviruses to shed light on the origin, structure, and sequence evolution of the asp ORF. The results emerging from our studies support the hypothesis of a recent de novo addition of the antisense ORF to the HIV-1 genome through a process that entailed progressive removal of existing internal stop codons from SIV strains to HIV-1 strains of group M, and fine tuning of the codon sequence in env that reduced the chances of new stop codons occurring in asp. Altogether, the study supports the notion that the HIV-1 asp gene encodes an accessory protein, providing a selective advantage to the virus.
format Online
Article
Text
id pubmed-8781085
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87810852022-01-22 Extending the Coding Potential of Viral Genomes with Overlapping Antisense ORFs: A Case for the De Novo Creation of the Gene Encoding the Antisense Protein ASP of HIV-1 Pavesi, Angelo Romerio, Fabio Viruses Article Gene overprinting occurs when point mutations within a genomic region with an existing coding sequence create a new one in another reading frame. This process is quite frequent in viral genomes either to maximize the amount of information that they encode or in response to strong selective pressure. The most frequent scenario involves two different reading frames in the same DNA strand (sense overlap). Much less frequent are cases of overlapping genes that are encoded on opposite DNA strands (antisense overlap). One such example is the antisense ORF, asp in the minus strand of the HIV-1 genome overlapping the env gene. The asp gene is highly conserved in pandemic HIV-1 strains of group M, and it is absent in non-pandemic HIV-1 groups, HIV-2, and lentiviruses infecting non-human primates, suggesting that the ~190-amino acid protein that is expressed from this gene (ASP) may play a role in virus spread. While the function of ASP in the virus life cycle remains to be elucidated, mounting evidence from several research groups indicates that ASP is expressed in vivo. There are two alternative hypotheses that could be envisioned to explain the origin of the asp ORF. On one hand, asp may have originally been present in the ancestor of contemporary lentiviruses, and subsequently lost in all descendants except for most HIV-1 strains of group M due to selective advantage. Alternatively, the asp ORF may have originated very recently with the emergence of group M HIV-1 strains from SIVcpz. Here, we used a combination of computational and statistical approaches to study the genomic region of env in primate lentiviruses to shed light on the origin, structure, and sequence evolution of the asp ORF. The results emerging from our studies support the hypothesis of a recent de novo addition of the antisense ORF to the HIV-1 genome through a process that entailed progressive removal of existing internal stop codons from SIV strains to HIV-1 strains of group M, and fine tuning of the codon sequence in env that reduced the chances of new stop codons occurring in asp. Altogether, the study supports the notion that the HIV-1 asp gene encodes an accessory protein, providing a selective advantage to the virus. MDPI 2022-01-14 /pmc/articles/PMC8781085/ /pubmed/35062351 http://dx.doi.org/10.3390/v14010146 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pavesi, Angelo
Romerio, Fabio
Extending the Coding Potential of Viral Genomes with Overlapping Antisense ORFs: A Case for the De Novo Creation of the Gene Encoding the Antisense Protein ASP of HIV-1
title Extending the Coding Potential of Viral Genomes with Overlapping Antisense ORFs: A Case for the De Novo Creation of the Gene Encoding the Antisense Protein ASP of HIV-1
title_full Extending the Coding Potential of Viral Genomes with Overlapping Antisense ORFs: A Case for the De Novo Creation of the Gene Encoding the Antisense Protein ASP of HIV-1
title_fullStr Extending the Coding Potential of Viral Genomes with Overlapping Antisense ORFs: A Case for the De Novo Creation of the Gene Encoding the Antisense Protein ASP of HIV-1
title_full_unstemmed Extending the Coding Potential of Viral Genomes with Overlapping Antisense ORFs: A Case for the De Novo Creation of the Gene Encoding the Antisense Protein ASP of HIV-1
title_short Extending the Coding Potential of Viral Genomes with Overlapping Antisense ORFs: A Case for the De Novo Creation of the Gene Encoding the Antisense Protein ASP of HIV-1
title_sort extending the coding potential of viral genomes with overlapping antisense orfs: a case for the de novo creation of the gene encoding the antisense protein asp of hiv-1
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781085/
https://www.ncbi.nlm.nih.gov/pubmed/35062351
http://dx.doi.org/10.3390/v14010146
work_keys_str_mv AT pavesiangelo extendingthecodingpotentialofviralgenomeswithoverlappingantisenseorfsacaseforthedenovocreationofthegeneencodingtheantisenseproteinaspofhiv1
AT romeriofabio extendingthecodingpotentialofviralgenomeswithoverlappingantisenseorfsacaseforthedenovocreationofthegeneencodingtheantisenseproteinaspofhiv1