Cargando…
Simultaneous Classification of Both Mental Workload and Stress Level Suitable for an Online Passive Brain–Computer Interface
Research studies on EEG-based mental workload detection for a passive BCI generally focus on classifying cognitive states associated with the performance of tasks at different levels of difficulty, with no other aspects of the user’s mental state considered. However, in real-life situations, differe...
Autores principales: | Bagheri, Mahsa, Power, Sarah D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781201/ https://www.ncbi.nlm.nih.gov/pubmed/35062495 http://dx.doi.org/10.3390/s22020535 |
Ejemplares similares
-
Electrode replacement does not affect classification accuracy in dual-session use of a passive brain-computer interface for assessing cognitive workload
por: Estepp, Justin R., et al.
Publicado: (2015) -
EEG-TNet: An End-To-End Brain Computer Interface Framework for Mental Workload Estimation
por: Fan, Chaojie, et al.
Publicado: (2022) -
Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment
por: Aricò, Pietro, et al.
Publicado: (2016) -
Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain–Computer Interface
por: Asgher, Umer, et al.
Publicado: (2020) -
Passive Brain-Computer Interfaces for Enhanced Human-Robot Interaction
por: Alimardani, Maryam, et al.
Publicado: (2020)