Cargando…
Visual Feature Learning on Video Object and Human Action Detection: A Systematic Review
Video object and human action detection are applied in many fields, such as video surveillance, face recognition, etc. Video object detection includes object classification and object location within the frame. Human action recognition is the detection of human actions. Usually, video detection is m...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781209/ https://www.ncbi.nlm.nih.gov/pubmed/35056238 http://dx.doi.org/10.3390/mi13010072 |
Sumario: | Video object and human action detection are applied in many fields, such as video surveillance, face recognition, etc. Video object detection includes object classification and object location within the frame. Human action recognition is the detection of human actions. Usually, video detection is more challenging than image detection, since video frames are often more blurry than images. Moreover, video detection often has other difficulties, such as video defocus, motion blur, part occlusion, etc. Nowadays, the video detection technology is able to implement real-time detection, or high-accurate detection of blurry video frames. In this paper, various video object and human action detection approaches are reviewed and discussed, many of them have performed state-of-the-art results. We mainly review and discuss the classic video detection methods with supervised learning. In addition, the frequently-used video object detection and human action recognition datasets are reviewed. Finally, a summarization of the video detection is represented, e.g., the video object and human action detection methods could be classified into frame-by-frame (frame-based) detection, extracting-key-frame detection and using-temporal-information detection; the methods of utilizing temporal information of adjacent video frames are mainly the optical flow method, Long Short-Term Memory and convolution among adjacent frames. |
---|