Cargando…

Multi-Targeted Approaches and Drug Repurposing Reveal Possible SARS-CoV-2 Inhibitors

The COVID-19 pandemic caused by SARS-CoV-2 is unprecedented in recent memory owing to the non-stop escalation in number of infections and deaths in almost every country of the world. The lack of treatment options further worsens the scenario, thereby necessitating the exploration of already existing...

Descripción completa

Detalles Bibliográficos
Autores principales: Alanazi, Khalid Mashay, Farah, Mohammad Abul, Hor, Yan-Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781363/
https://www.ncbi.nlm.nih.gov/pubmed/35062685
http://dx.doi.org/10.3390/vaccines10010024
Descripción
Sumario:The COVID-19 pandemic caused by SARS-CoV-2 is unprecedented in recent memory owing to the non-stop escalation in number of infections and deaths in almost every country of the world. The lack of treatment options further worsens the scenario, thereby necessitating the exploration of already existing US FDA-approved drugs for their effectiveness against COVID-19. In the present study, we have performed virtual screening of nutraceuticals available from DrugBank against 14 SARS-CoV-2 proteins. Molecular docking identified several inhibitors, two of which, rutin and NADH, displayed strong binding affinities and inhibitory potential against SARS-CoV-2 proteins. Further normal model-based simulations were performed to gain insights into the conformational transitions in proteins induced by the drugs. The computational analysis in the present study paves the way for experimental validation and development of multi-target guided inhibitors to fight COVID-19.