Cargando…
Novel Model Based on Artificial Neural Networks to Predict Short-Term Temperature Evolution in Museum Environment
The environmental microclimatic characteristics are often subject to fluctuations of considerable importance, which can cause irreparable damage to art works. We explored the applicability of Artificial Intelligence (AI) techniques to the Cultural Heritage area, with the aim of predicting short-term...
Autores principales: | Bile, Alessandro, Tari, Hamed, Grinde, Andreas, Frasca, Francesca, Siani, Anna Maria, Fazio, Eugenio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781373/ https://www.ncbi.nlm.nih.gov/pubmed/35062573 http://dx.doi.org/10.3390/s22020615 |
Ejemplares similares
-
A Statistical Approach for A-Posteriori Deployment of Microclimate Sensors in Museums: A Case Study
por: Frasca, Francesca, et al.
Publicado: (2022) -
CleAir Monitoring System for Particulate Matter: A Case in the Napoleonic Museum in Rome
por: Fazio, Eugenio, et al.
Publicado: (2017) -
Assessment of microbiological contamination in the work environments of museums, archives and libraries
por: Skóra, Justyna, et al.
Publicado: (2015) -
Editorial: Environment, Art, and Museums: The Aesthetic Experience in Different Contexts
por: Mastandrea, Stefano, et al.
Publicado: (2021) -
Evolution of the web in artificial intelligence environments
por: Ichalkaranje, N, et al.
Publicado: (2008)