Cargando…
Exploring Silent Speech Interfaces Based on Frequency-Modulated Continuous-Wave Radar
Speech is our most natural and efficient form of communication and offers a strong potential to improve how we interact with machines. However, speech communication can sometimes be limited by environmental (e.g., ambient noise), contextual (e.g., need for privacy), or health conditions (e.g., laryn...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781659/ https://www.ncbi.nlm.nih.gov/pubmed/35062610 http://dx.doi.org/10.3390/s22020649 |
Sumario: | Speech is our most natural and efficient form of communication and offers a strong potential to improve how we interact with machines. However, speech communication can sometimes be limited by environmental (e.g., ambient noise), contextual (e.g., need for privacy), or health conditions (e.g., laryngectomy), preventing the consideration of audible speech. In this regard, silent speech interfaces (SSI) have been proposed as an alternative, considering technologies that do not require the production of acoustic signals (e.g., electromyography and video). Unfortunately, despite their plentitude, many still face limitations regarding their everyday use, e.g., being intrusive, non-portable, or raising technical (e.g., lighting conditions for video) or privacy concerns. In line with this necessity, this article explores the consideration of contactless continuous-wave radar to assess its potential for SSI development. A corpus of 13 European Portuguese words was acquired for four speakers and three of them enrolled in a second acquisition session, three months later. Regarding the speaker-dependent models, trained and tested with data from each speaker while using 5-fold cross-validation, average accuracies of 84.50% and 88.00% were respectively obtained from Bagging (BAG) and Linear Regression (LR) classifiers, respectively. Additionally, recognition accuracies of 81.79% and 81.80% were also, respectively, achieved for the session and speaker-independent experiments, establishing promising grounds for further exploring this technology towards silent speech recognition. |
---|